Free access
Issue
Ann. For. Sci.
Volume 57, Number 5-6, June-September 2000
Second International Workshop on Functional-Structural Tree Models
Page(s) 513 - 520
DOI http://dx.doi.org/10.1051/forest:2000138

References

1
Barber S.A., Soil Nutrient Bioavailability: A Mechanistic Approach. 2nd ed. John Wiley & Sons, New York, 1984.
2
Clausnitzer V., Hopmans J.W., Simultaneous modeling of transient three-dimensional root growth and soil water flow, Plant Soil 164 (1994), 299-314.
3
Cruz C., Lips S.H., Dartins-Lonçao M.A., Uptake regions of inorganic nitrogen in roots of seedlings, Physiol. Plant. 95 (1995) 167-175.
4
Clarkson D.T., Sanderson J., Russel R.S., Ion uptake and root age, Nature 220 (1968) 805-806.
5
Doussan C., Pagès L., Vercambre G., Modelling the hydraulic architecture of root systems: An integrated approach of water absorption. I. Model description, Ann. Bot. 81 (1998) 213-223.
6
Doussan C., Vercambre G., Pagès L., Modelling the hydraulic architecture of root systems: An integrated approach of water absorption. II. Distribution of conductances and consequences, Ann. Bot. 81 (1998) 225-232.
7
Drew M.C., Saker L.R., Nutrient supply and the growth of Barley. II. Localized, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system, J. Exp. Bot. 26 (1974) 79-90.
8
Eshel A., Waisel Y, Multiform and multifunction of various constituents of one root system, in: Plant roots, the hidden half 2nd Ed.. Waisel Y, Eshel A., Kafkafi U. (Eds.). Deker, New-York, 1996, pp. 175-192.
9
Feddes R.A., Kabat J.T., Bronswijk J.J.B., Halbertsma J., Modelling soil water dynamics in the unsaturated zone, State Art. J. Hydrol. 100 (1988) 69-111.
10
Frensch J., Hsia T.C., Steudle E., Water and solute transport along developing Maize roots, Planta 198 (1996) 69-111.
11
Gardner W.R., Dynamic aspects of water availability to plants, Soil Sci. 89 (1960) 63-73.
12
Hinsinger P., How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere, Adv. Agron. 64 (1998) 225-265.
13
Jackson T.C., Caldwell M.B., Modeling the root water potential and soil-roots water transport in the two-dimensional case. I. Presentation of the model, Soil Sci. Soc Am. J. 55 (1993) 1203-1212.
14
Jungk A., Dynamics of nutrient movement at the soil-root interface, in: Plant roots. The hidden half 2nd Ed. Waisel Y., Eshel A., Kafkafi (Eds.). Marcel Dekker, Inc., New-York, 1996, pp. 529-556.
15
Lafolie F., Bruckler L., Tardieu F., Modeling the root water potential and soil-roots water transport in the two-dimensional case. I. Presentation of the model, Soil Sci. Soc Am. J. 55 (1991) 1203-1212.
16
Le Roux Y., Pagès L., Développement et polymorphisme racinaire chez de jeunes semis d'hévéa (Hevea brasiliensis), Can. J. Bot. 72 (1994) 924-932.
17
Lüttge E., Klugge M., Bauer G., Botanique. TecDoc Paris, 1992.
18
Millard P., Ecophysiology of the internal cycling of nitrogen for tree growth. Z. Planzenernähr., Bodenk. 159 (1996) 1-10.
19
Molz F.J., Models of water transport in the soil-plant system: A review, Water Resour. Res. 23 (1981) 1346-1356.
20
Moreshet S., Huck M.G., Dynamics of water permeability, in: Plant roots. The hidden half. Waisel Y., Eshel A., Kafkafi (Eds.), Marcel Dekker, Inc., New-York, 1991, pp. 605-626.
21
Nye P.H., Marriott F.H.C., A theoretical study of the distribution of substances around roots resulting from simultaneous diffusion and mass flow, Plant Soil 3 (1969) 459-472.
22
Pellerin S., Pagès L., Evaluation in field conditions of a three-dimensional architectural model of the maize root system: comparison of simulated and observed horizontal root maps, Plant Soil 178 (1996) 101-112.
23
Robinson D., The responses of plants to non-uniform supplies of nutrients, New Phytol. 127 (1994) 635-674.
24
Simonneau T., Habib R., Goutouly, J.-P., Huguet J.-G., Diurnal changes in stem diameter depend upon variations in water content: direct evidence in peach trees, J. exp. Bot. 44 (1993) 615-621.
25
Spek L.Y., Van Noordwijk M., Proximal root diameter as predictor of total root size for fractal branching. II. Numerical model, Plant Soil 164 (1994) 119-127.
26
Steudle E., Peterson C.A., How does water get through roots? J. exp. Bot. 49 (1998) 775-788.
27
Tardieu F., Bruckler L., Lafolie F., Root clumping may affect the root water potential and the resistance to soil root water transport, Plant Soil 140 (1992) 291-301.
28
Thaler P., Pagès L., Root apical diameter and root elongation rate of rubber seedlings (Hevea brasiliensis) show parallel responses to photoassimilate availability, Physiol. Plant. 97 (1996) 365-371.
29
Van Noordwijk M., Spek L.Y., De Willigen P., Proximal root diameter as predictor of total root size for fractal branching. I. Theory, Plant Soil 164 (1994) 107-117.
30
Vercambre G., Doussan C., Pagès L., Habib R., Distribution of hydraulic conductance in peach tree root system, Implication for water extraction, Plant Soil (1999) (submitted).
31
Vercambre G., Pagès L., Architecture racinaire du pêcher en conditions de verger. Utilisation d'un modèle pour lier des observations statiques et simuler une dynamique de mise en place, in: Architecture et modélisation en Arboriculture fruitière, 11$^{\rm e}$ Colloque sur les Recherches Fruitières, INRA-CTIFL, Montpellier, 05-06/03/98, 1998, pp. 286-292.
32
Waisel Y., Eshel A., Differences in ion uptake among roots of various kinds, J. Plant. Nutr. 15 (1992) 945-958.
33
Wang X.L., McCully M.E., Canny M.J., The branch roots of Zea. IV. The maturation and openness of xylem conduits in first-order branches of soil-grown roots, New. Phytol. 126 (1994) 21-29.


Abstract

Copyright INRA, EDP Sciences