Free access
Issue
Ann. For. Sci.
Volume 57, Number 5-6, June-September 2000
Second International Workshop on Functional-Structural Tree Models
Page(s) 521 - 533
DOI http://dx.doi.org/10.1051/forest:2000139

References

1
Balandier P., Lacointe A., Le Roux X., Sinoquet H., Cruiziat P., Le Dizès S., "SIMWAL": a structure - function model simulating single walnut tree growth according to climate and pruning, Ann. For. Sci. 57 (2000) 571-585.
2
Bamber R.K., Humphreys F.R., Variations in sapwood starch levels in some australian forest species, Aust. For. 29 (1965) 15-23.
3
Bassow S.L., Ford E.D., Section 8: simple whole tree: TRANS, in: Kiester A.R. (Ed.), NAPAP, Development and use of tree and forest response models (Acidic deposition: state of science and technology), Report 17, III, Washington DC, 1990, pp. 83-95.
4
Bassow S.L., Ford E.D., Kiester A.R., A critique of carbon-based tree growth models, in: Dixon R.K., Meldahl R.S., Ruark G.A., Warren W.G. (Eds.), Process Modelling of forest growth responses to environmental stress, Timber Press, Portland, Oregon, 1990, 50-57.
5
Baumgärtner J., Wermelinger B., Hugentobler U., Delucchi V., Baronio P., De Bernardinis E., Oertli J.J., Gessler G., Use of a dynamic model on dry matter production and allocation in apple orchard ecosystem research, Acta Hort. 276 (1990) 123-139.
6
Berninger F., Nikinmaa E., Implications of varying pipe model relationships on Scots Pine growth in different climates, Funct. Ecol. 11 (1997) 146-156.
7
Cannell M.G.R., Dewar R.C., Carbon allocation in trees: A review of concepts for modelling, in: Begon M., Fitter A.H. (Eds.), Advances in Ecological Research, Vol. 25, Academic Press, London, 1994, pp. 59-104.
8
Chen J.L., Reynolds J.F., A coordination model of whole-plant carbon allocation in relation to water stress, Ann. Bot. 80 (1997) 45-55.
9
Coutand C., Étude biomécanique de l'effet d'une flexion contrôlée sur la croissance primaire de la tige de tomate (Lycopersicum esculentum Mill.), Ph.D. Thesis, Université Bordeaux-I, France, 1999, 109 pp.
10
Davidson R.L., Effect of root/leaf temperature differentials on root/shoot ratios in some pasture grasses and clover, Ann. Bot. 33 (1969) 561-569.
11
Davis J.T., Sparks D., Assimilation and translocation patterns of carbon-14 in the shoot of fruiting pecan trees, Carya illinoensis Koch, J. Am. Soc. hortic. Sci. 99 (1974) 468-480.
12
DeJong T.M., Fruit effects on photosynthesis in Prunus persica, Physiol. Plant. 66 (1986) 149-153.
13
Deleuze C., Houllier F., Prediction of stem profile of Picea abies using a process-based tree growth model, Tree Physiol. 15 (1995) 113-120.
14
Deleuze C., Houllier F., A transport model for tree ring width, Silva Fenn. 31 (1997) 239-250.
15
Dewar R.C., A root-shoot partitioning model based on carbon-nitrogen-water interactions and Münch phloem flow, Funct. Ecol. 7 (1993) 356-368.
16
Dickson R.E., Carbon and nitrogen allocation in trees, Ann. Sci. For. 46 (1989) 631s-647s.
17
Donnelly J.R., Seasonal changes in photosynthate transport within elongating shoots of Populus grandidentata, Can. J. Bot. 52 (1974) 2547-2559.
18
Escobar-Gutiérrez A.J., Daudet F.A., Gaudillère J.P., Maillard P., Frossard J.S., Modelling of allocation and balance of carbon in walnut (Juglans regia L.) seedlings during heterotrophy-autotrophy transition, J. Theor. Biol. 194 (1998) 29-49.
19
Farquhar G.D., Caemmerer (von) S., Berry J.A., A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta 149 (1980) 78-90.
20
Farrar J.F., Sink strength: What is it and how do we measure it? Forum, Plant Cell Environ. 16 (1993) 1013-1046.
21
Ford R., Ford E.D., Structure and basic equations of a stimulator for branch growth in the Pinaceae, J. Theor. Biol. 146 (1990) 1-13.
22
Ford E.D., Avery A., Ford R., Simulation of branch growth in the Pinaceae: Interactions of morphology, phenology, foliage productivity, and the requirement for structural support, on the export of Carbon, J. Theor. Biol. 146 (1990) 15-36.
23
Fournier M., Bailleres H., Chanson B., Tree biomechanics: growth, cumulative prestresses, and reorientations, Biomimetics 2 (1994) 229-251.
24
Génard M., Pagès L., Kervella J., A carbon balance model of peach tree growth and development for studying the pruning response, Tree Physiol. 18 (1998) 351-362.
25
Grossman Y.L., DeJong T.M., PEACH: A simulation model of reproductive and vegetative growth in peach trees, Tree Physiol. 14 (1994) 329-345.
26
Harpaz A., Gal S., Goldschmidt E.E., Rabber D., Gelb E., A model of the annual cycle of dry matter production and partition in citrus and other evergreen fruit trees, Acta Hortic. 276 (1990) 149-155.
27
Hoffmann F., FAGUS, a model for growth and development of beech, Ecol. Modell. 83 (1995) 327-348.
28
Host G.E., Isebrands J.G., Theseira G.W., Kiniry J.R., Graham R.L., Temporal and spatial scaling from individual trees to plantations: a modeling strategy, Biomass and Bioenergy 11 (1996) 233-243.
29
Kellomäki S., Strandman H., A model for the structural growth of young Scots pine crowns based on light interception by shoots, Ecol. Modelling 80 (1995) 237-250.
30
Kozlowski T.T., Keller T., Food relations of woody plants, Bot. Rev. 32 (1966) 293-382.
31
Lacointe A., Kajji A., Daudet F.A., Archer P., Frossard J.S., Mobilization of carbon reserves in young walnut trees, Acta bot. Gallica 140 (1993) 435-441.
32
Luan J., Muetzelfeldt R.I., Grace J., Hierarchical approach to forest ecosystem simulation, Ecol. Modell. 86 (1996) 37-50.
33
Maillard P., Deléens E., Castell F., Daudet F.A., Source-sink relationships for carbon and nitrogen during early growth of Juglans regia L. seedlings: analysis at two elevated CO2 concentrations, Ann. For. Sci. 56 (1999) 59-69.
34
Mäkelä A., Implications of the pipe-model theory on dry matter partitioning and height growth in trees, J. Theor. Biol. 123 (1986) 103-120.
35
Mäkelä A., Modelling structural functional relationships in whole-tree growth resource allocation, in: Dixon R.K., Meldahl R.S., Ruark G.A., Warren W.G. (Eds.), Process Modelling of forest growth responses to environmental stress, Timber Press, Portland, Oregon, 1990, pp. 81-95.
36
Mäkelä A., A carbon balance model of growth and self-pruning in trees based on structural relationships, For. Sci. 43 (1997) 7-23.
37
Mäkelä A., Hari P., Stand growth model based on carbon uptake and allocation in individual trees, Ecol. Modell. 33 (1986) 204-229.
38
Mäkelä A., Sievänen R., Comparison of two shoot-root partitioning models with respect to substrate utilization and functional balance, Ann. Bot. 59 (1987) 129-140.
39
Mäkelä A., Sievänen R., Height growth strategies in open-grown trees, J. Theor. Biol. 159 (1992) 443-467.
40
Mäkelä A., Vanninen P., Ikonen V.P., An application of process-based modelling to the development branchiness in Scots pine, Silva Fenn. 31 (1997) 369-380.
41
Mattheck C., Biomechanical optimum in woody stems, in: Gatner B.L. (Ed.), Plant stems, Academic Press, New York, 1995, pp. 75-90.
42
Mattheck C., Teschner M., Schäfer J., Mechanical control of root growth: a computer simulation, J. Theor. Biol. 184 (1997) 261-269.
43
McMahon T.A., Kronauer R.E., Tree structures: deducing the principle of mechanical design, J. Theor. Biol. 59 (1976) 443-466.
44
McMurtrie R., Wolf L., Above- and below-ground growth of forest stands: a carbon budget model, Ann. Bot. 52 (1983) 437-448.
45
Minchin P.E.H., Thorpe M.R., Farrar J.F., A simple mechanistic model of phloem transport which explains sink priority, J. Exp. Bot. 44 (1993) 947-955.
46
Moulia B., Fournier M., Optimal mechanical design of plant stems: the models behind the allometric power laws, in: Jeronimidis G., Vincent J.F.V. (Eds.), Plant Biomechanics, Centre for Biomimetics, Univ. of Reading, Reading (UK), 1997, pp. 43-55.
47
Münch E., Die Stoffbewegungen in der Pflanze, Gustav Fischer, Jena, 1930.
48
Perttunen J., Sievänen R., Nikinmaa E., Salminen H., Saarenmaa H., Väkevä J., LIGNUM: A Tree Model Based on Simple Structural Units, Ann. Bot. 77 (1996) 87-98.
49
Priestley C.A., Catlin P.B., Short-term responses to supplementary nitrogen in young apple trees as related to carbohydrate nutrition, Ann. Bot. 38 (1974) 469-476.
50
Promnitz L.C., A photosynthate allocation model for tree growth, Photosynthetica 9 (1975) 1-15.
51
Rauscher H.M., Isebrands J.G., Host G.E., Dickson R.E., Dickmann D.I., Crow T.R., Michael D.A., ECOPHYS: An ecophysiological growth process model for juvenile poplar, Tree Physiol. 7 (1990) 255-281.
52
Reffye (de) Ph., Fourcaud T., Blaise F., Barthélémy D., Houllier F., A functional model of tree growth and tree architecture, Silva Fenn. 31 (1997) 297-311.
53
Reffye (de) Ph., Houllier F., Blaise F., Fourcaud T., Essai sur les relations entre l'architecture d'un arbre et la grosseur de ses axes végétatifs, in: Bouchon J, Reffye (de) Ph., Barthélémy D. (Eds.), Modélisation et simulation de l'architecture des végétaux, INRA Éditions, Paris, 1997, pp. 255-423.
54
Reynolds J.F., Chen J.L., Modelling whole-plant allocation in relation to carbon and nitrogen supply. Coordination versus optimization: Opinion, Plant Soil 185 (1997) 65-74.
55
Reynolds J.F., Thornley J.H.M., A shoot-root partitioning model, Ann. Bot. 49 (1982) 587-597.
56
Sheehy J.E., Mitchell P.L., Durand J.L., Gastal F., Woodward F.I., Calculation of translocation coefficients from phloem anatomy for use in crop models, Ann. Bot. 76 (1995) 263-269.
57
Shinozaki K., Yoda K., Hozumi K., Kira T., A quantitative analysis of plant form: the Pipe model theory. I. Basic analyses, Jpn. J. Ecology 14 (1964) 97-105.
58
Sorrensen-Cothern K.A., Ford E.D., Sprugel D.G., A model of competition incorporating plasticity through modular foliage and crown development, Ecol. Monogr. 63 (1993) 227-304.
59
Sprugel D.G., Hinckley T.M., Schaap W., The theory and practice of branch autonomy, Ann. Rev. Ecol. Syst. 22 (1991) 309-334.
60
Stokes A., Nicoll B.C., Coutts M.P., Fitter A.H., Response of young Sitka spruce clones to mechanical pertutbation and nutrition: effects on biomass allocation, root development, and resistance to bending, Can. J. For. Res. 27 (1997) 1049-1057.
61
Takenaka A., A simulation model of tree architecture development based on growth response to local light environment, J. Plant Res. 107 (1994) 321-330.
62
Telewski F.W., Gardiner B.A., White G., Plovanovich-Jones A., Wind flow around multi-storey buildings and its influence on tree growth, in: Jeronimidis G., Vincent J.F.V. (Eds.), Plant Biomechanics, Centre for Biomimetics, Univ of Reading, Reading (UK), 1997, pp. 179-183.
63
Thaler P., Pagès L., Modelling the influence of assimilate availability on root growth and architecture, Plant soil 201 (1998) 307-320.
64
Thornley J.H.M., A model to describe the partitioning of photosynthates during vegetative plant growth, Ann. Bot. 36 (1972) 419-430.
65
Thornley J.H.M., A balanced quantitative model for root:shoot ratios in vegetative plants, Ann. Bot. 36 (1972) 431-441.
66
Thornley J.H.M., Root:shoot interactions, in: Integration of activity in the higher plant, Jennings D.H. (Ed.), Symposium of the Society for Experimental Biology, Cambridge University Press, London, 1977, pp. 367-389.
67
Thornley J.H.M., A transport-resistance model of forest growth and partitioning, Ann. Bot. 68 (1991) 211-226.
68
Thornley J.H.M., Shoot:Root allocation with respect to C, N and P: an investigation and comparison of resistance and teleonomic models, Ann. Bot. 75 (1995) 391-405.
69
Thornley J.H.M., Modelling allocation with transport/conversion processes, Silva Fenn. 21 (1997) 341-355.
70
Valentine H.T., Tree Growth Models: Derivations employing the Pipe Model Theory, J. Theor. Biol. 117 (1985) 579-585.
71
Valentine H.T., A carbon balance model of stand growth: a derivation employing pipe-model theory and the self-thinning rule, Ann. Bot. 62 (1988) 389-396.
72
Valentine H.T., Height growth, site index, and carbon metabolism, Silva Fenn. 31 (1997) 251-263.
73
Wardlaw I.F., The control of carbon partitioning in plants, New Phytol. 116 (1990) 341-381.
74
Wargo P.M., Starch storage and radial growth in woody roots of sugar maple, Can. J. For. Res. 9 (1979) 49-56.
75
Warren-Wilson J., Ecological data on dry matter production by plants and plant communities, in: Bradley E.F., Denmead O.T. (Eds.), The collection and processing of field data, Interscience Publishers, New York, 1967, pp. 77-123.
76
Warren-Wilson J., Control of crop processes, in: Rees A.R., Cockshull K.E., Hand D.W., Hurd R.G. (Eds.), Crop processes in controlled environment, Academic Press, New York, 1972, pp. 7-30.
77
Weinstein D.A., Beloin R.M., Yanai R.D., Modeling changes in red spruce carbon balance and allocation in response to interacting ozone and nutrient stresses, Tree Physiol. 9 (1991) 127-146.
78
Wermelinger B., Baumgärtner J., Guttierrez A.P., A demographic model of assimilation and allocation of carbon and nitrogen in grapevines, Ecol. Modell. 53 (1991) 1-26.
79
West P.W., Model of above-ground assimilate partitioning and growth of individual trees in even aged forest monoculture, J. Theor. Biol. 161 (1993) 369-394.
80
Wilson J.B., A review of evidence on the control of shoot:root ratio in relation to models, Ann. Bot. 61 (1988) 433-449.
81
Zhang Y., Reed D.D., Cattelino P.J., Gale M., Jones E.A., Liechty H.O., Mroz G.D., A process-based growth model for young red pine, For. Ecol. Manag. 69 (1994) 21-40.


Abstract

Copyright INRA, EDP Sciences