Free access
Issue
Ann. For. Sci.
Volume 59, Number 1, January-February 2002
Page(s) 63 - 80
DOI http://dx.doi.org/10.1051/forest:2001006

References

1
Bariteau M., Courbet F., Dreyfus Ph., Ducrey M., Du Merle P., Fady B., Oswald H., Teissier du Cros E., Faut-il boiser en région méditerranéenne ?, Forêt-entreprise 93 (1993) 24-45.
2
Bergqvist G., Wood density traits in Norway spruce understorey: effects of growth rate and birch shelterwood density, Ann. Sci. For. 55 (1998) 809-821.
3
Berniger F., Nikinmaa E., Foliage area - sapwood area relationships of Scots pine (Pinus sylvestris) trees in different climates, Can. J. For. Res. 24 (1994) 2263-2268.
4
Blanche C.A., Hodges J.D., Nebeker T.E., A leaf area - sapwood area ratio developed to rate loblolly pine tree vigor, Can. J. For. Res. 15 (1985) 1181-1184.
5
Burkhart H.E., Walton S.B., Incorporating crown ratio into taper equations for loblolly pine trees, For. Sci. 31 (1985) 478-484.
6
Cao Q.V., Burkhart H.E., Max T.A., Evaluation of two methods for cubic-volume prediction of loblolly pine to any merchantable limit, For. Sci. 26 (1980) 71-80.
7
Cao Q.V., Pepper W.D., Predicting inside bark diameter for shortleaf, loblolly, and longleaf pines, South. J. Appl. For. 10 (1986) 220-224.
8
Clutter J.L., Compatible growth and yield models for loblolly pine, For. Sci. 9 (1963) 354-371.
9
Colin F., Houllier, F. Branchiness of Norway spruce in northeastern France: predicting the main crown characteristics from usual tree measurements, Ann. Sci. For. 49 (1992) 511-538.
10
Courbet F., A three-segmented model for the vertical distribution of annual ring area. Application to Cedrus atlantica Manetti, For. Ecol. Manag. 119 (1999) 177-194.
11
Coyea M.R.., Margolis H.A., Gagnon R.R., A method for reconstructing the development of the sapwood area of balsam fir, Tree Physiol. 6 (1990) 283-291.
12
Cunia T., On the error of tree biomass regressions: trees selected by cluster sampling and double sampling, in: Estimating tree biomass regressions and their error, Proc. Workshop on tree biomass regression functions and their contribution to the error of forest inventories estimates, May 26-30, 1986, Syracuse, New York, 1986, pp. 49-59.
13
Deleuze C., Houllier F., Prediction of stem profile of Picea abies using a process-based tree growth model, Tree Physiol. 15 (1995) 113-120.
14
Demaerschalk J.P., Kosak A., The whole-bole system: a conditionned dual-equation system for precise prediction of tree profiles, Can. J. For. Res. 7 (1977) 488-497.
15
Dhôte J.-F., Hatsch E., Rittié D., Profil de la tige et géométrie de l'aubier chez le Chêne sessile (Quercus petraea Liebl), Bull. Techn. ONF 33 (1997) 59-82.
16
Dyer M.E., Burkhart H.E., Compatible crown ratio and crown height models, Can. J. For. Res. 17 (1987) 572-574.
17
Ewers F.W., Cruiziat P., Measuring water transport and storage, in: Lassoie J.P., Hinckley T.M (Eds.), Techniques and Approaches in Forest Tree Ecophysiology, CRC Press, Boca Raton, Louisiana, 1991, pp. 91-115.
18
Fonweban J.N., Houllier F., Tarifs de cubage et fonctions de défilement pour Eucalyptus saligna au Cameroun, Ann. Sci. For. 54 (1997) 513-527.
19
Forslund R.R., The power function as a simple stem profile examination tool, Can. J. For. Res. 21 (1990) 193-198.
20
Fowler G.W., Damschroder L.J., A red pine bark factor equation for Michigan, North. J. Appl. For. 5(1) (1988) 28-30.
21
Gjerdrum P., Prediction of heartwood in Pinus sylvestris, in: Nepveu G. (Ed), Proc. 3rd Workshop: Connection between silviculture and wood quality through modelling approaches ans simulation software, September 5-12, 1999, La Londe-Les-Maures, 1999, pp. 145-148.
22
Gilmore D.W., Seymour R.S., Maguire D.A., Foliage - sapwood area relationships for Abies balsamea in central Maine, U.S.A, Can. J. For. Res. 26 (1996) 2071-2079.
23
Gordon A., Estimating bark thickness of Pinus radiata, N. Z. J. For. Sci. 13 (1983) 340-353.
24
Granier A., Etude des relations entre la section du bois d'aubier et la masse foliaire chez le Douglas (Pseudotsuga menziesii Mirb. Franco), Ann. Sci. For. 38 (1971) 503-512.
25
Guay, R., Gagnon, R., Morin, H., A new automatic and interactive tree ring measurement system based on a line scan camera, For. Chron. 68 (1992) 138-141.
26
Houllier F., Leban J.-M., Colin F., Linking growth modelling to timber quality assessment for Norway spruce, For. Ecol. Manage. 74 (1995) 91-102.
27
Kozak A., A variable exponent taper equation, Can. J. For. Res. 18 (1988) 1363-1368.
28
Långström B., Hellqvist C., Effects of differents pruning regimes on growth and sapwood area of Scots pine, For. Ecol. Manag., 44 (1991) 239-254.
29
Long J.N., Smith F.W., Leaf area - sapwood area relations of lodgepole pine as influenced by stand density and site index, Can. J. For. Res. 18 (1988) 247-250.
30
Maguire D.A., Hann D.W., The relationship between gross crown dimensions and sapwood area at crown base in Douglas-fir, Can. J. For. Res. 19 (1989) 557-565.
31
Maguire D.A., Hann D.W., Bark thickness and bark volume in Southern Oregon Douglas-Fir, West. J. Appl. For. 5 (1990) 5-8.
32
Maguire D.A., Battista J.L.F., Sapwood taper models and implied sapwood volume and foliage profiles for coastal Douglas-fir, Can. J. For. Res. 26 (1996) 849-863.
33
Mäkelä A., Virtanen K., Nikinmaa E., The effects of ring width, stem position, and stand density on the relationship between foliage biomass ans sapwood area in Scots pine (Pinus sylvestris), Can. J. For. Res. 25 (1995) 970-977.
34
Mäkinen H., Effect of stand density on radial growth of branches of Scots pine in southern and central Finland, Can. J. For. Res. 29 (1999) 1216-1224.
35
Marquardt, D.W., An algorithm for least squares estimation of non linear parameters, J. Soc. Indust. App. Math. 11 (1963) 431-441.
36
Max T.A., Burkhart H.E., Segmented Polynomial Regression Applied to Taper Equations, For. Sci. 22 (1976) 283-289.
37
Meredieu C., Croissance et branchaison du Pin laricio (Pinus nigra Arnold ssp. Laricio (Poiret) Maire). Elaboration et évaluation d'un système de modèles pour la prévision de caractéristiques des arbres et du bois. Thèse de Doctorat, Université Claude Bernard Lyon I, 1998.
38
Meredieu C., Colin F., Herve J. C. Modelling branchiness of Corsican pine with mixed-effect models (Pinus nigra Arnold ssp. laricio (Poiret) Maire), Ann. Sci. For. 55 (1998) 359-374.
39
Meredieu C., Colin F., Dreyfus Ph., Leban J.-M. A chain of models from tree growth to properties of boards for Pinus nigra ssp. laricio Arn.: simulation using CAPSIS (c) INRA and WinEpifn (c) INRA. in: Nepveu G. (Ed.), Proceedings of the third workshop: Connection between silviculture and wood quality through modelling approaches ans simulation software, September 5-12, 1999, La Londe-Les-Maures, 1999, pp. 505-513.
40
Meyer H.A., Bark volume determination in trees, J. For. 44 (1946) 1067-1070.
41
Muhairwe C.K., LeMay V.M., Kozak A., Effects of adding tree, stand, and site variables to Kozak's variable-exponent taper equation, Can. J. For. Res. 24 (1994) 252-259.
42
Nepveu G., Blachon J.-L., Largeur de cerne et aptitude à l'usage en structure de quelques conifères: Douglas, Pin sylvestre, Pin maritime, Epicea de Sitka, Epicéa commun, Sapin pectiné. Rev. For. Fr. XLI 6 (1989) 497-506.
43
Newberry J.D., Burkhart H.E., Variable-form stem profile models for loblolly pine, Can. J. For. Res. 16 (1986) 109-114.
44
Newnham R.M., Variable-form taper functions for four Alberta tree species, Can. J. For. Res. 22 (1992) 210-223.
45
O'Hara K.L., Valappil N.I., Sapwood - leaf area prediction equations for multi-aged ponderosa pine stands in western Montana and central Oregon, Can. J. For. Res. 25 (1995) 1553-1557.
46
Ojansuu R., Maltamo M., Sapwood and heartwood taper in Scots pine stems, Can. J. For. Res. 25 (1995) 1928-1943.
47
Ormerod D.W., A simple bole model, For. Chron. 49 (1973) 136-138.
48
Polge H., Influence de la compétition et de la disponibilité en eau sur l'importance de l'aubier du Douglas, Ann. Sci. For. 39 (1982) 379-398.
49
Quezel P., Cèdres et cédraies du pourtour méditerranéen: signification bioclimatique et phytogéographique, Forêt méditerranéenne XIX 3 (1998) 243-260.
50
Ryan M.G., Sapwood volume for three subalpine conifers: predictive equations and ecological implications, Can. J. For. Res. 19 (1989) 1397-1401.
51
Ryan K.C., Rigolot E., Botelho H., Comparative analysis of fire resistance and survival of mediterranean and western north american conifers, in: Proceedings of the 12th Conference on Fire and Forest Meteorology, October 26-28, 1993, Jekyll Island, GA,1994, pp. 701-708.
52
Saint-André L., Leban J.M., Houllier F., Daquitaine R., Comparaison de deux modèles de profils de tige et validation sur un échantillon indépendant. Application à l'Epicéa commun dans le nord-est de la France. Ann. For. Sci. 56 (1999) 121-132.
53
SAS Institute Inc., SAS/STAT user's guide, version 6, fourth edition. SAS Institute Inc., Cary, NC, USA, 1990.
54
Shelburne V.B., Hedden R.L., Effect of stem height, dominance class, and site quality on sapwood permeability in loblolly pine (Pinus taeda L.), For. Ecol. Manag. 83 (1996) 163-169.
55
Shelburne V.B., Hedden R.L., Allen R.M., The effect of site, stand density, ans sapwood permeability on the relationship between leaf area and sapwood area in loblolly pine (Pinus taeda L.), For. Ecol. Manag. 58 (1993) 193-209.
56
Thomas C.E., Parresol B.R., Simple, flexible, trigonometric taper equations., Can. J. For. Res. 21 (1991) 1132-1137.
57
Thompson D.C., The effect of stand structure and stand density on the leaf area - sapwood area relationship of lodgepole pine, Can. J. For. Res. 19 (1989) 392-396.
58
Waring R.H., Schoeder P.E., Oren R., Application of the pipe model theory to predict canopy leaf area., Can. J. For. Res. 12 (1982) 556-560.
59
Whitehead D., Edwards W.R.N., Jarvis P.G., Conducting sapwood area, foliage area, and permeability in mature trees of Picea sitchensis and Pinus contorta, Can. J. For. Res. 14 (1984) 940-947.
60
Wiant H.V., Wingerd D.E., Variation of DIB/DOB ratios with height on hardwood trees, West Virginia For. Notes 11 (1984) 19-20.
61
Yang K.C., Hazenberg G., Sapwood and heartwood width relationship to tree age in Pinus banksiana, Can. J. For. Res. 21 (1991) 521-525.
62
Yang K.C., Hazenberg G., Impact of spacings on sapwood and heartwood thickness in Picea mariana (Mill.) B.S.P. and Picea glauca (Moench.) Voss, Wood Fiber Sci. 24 (1992) 330-336.
63
Yang K.C., Hazenberg G., Bradfield G.E., Maze J.R., Vertical variation of sapwood thickness in Pinus banksiana Lamb. and Larix laricina (Du Roi) K. Koch, Can. J. For. Res. 15 (1985) 822-828.

Abstract

Copyright INRA, EDP Sciences