Free access
Issue
Ann. For. Sci.
Volume 59, Number 4, May-June 2002
Page(s) 409 - 418
DOI http://dx.doi.org/10.1051/forest:2002015

References

  1. Aussenac G., Valette J.C., Comportement hydrique estival de Cedrus atlantica Manetti, Quercus ilex et Quercus pubescens Willd et de divers pins du Mont Ventoux, Ann. Sci. For. 39 (1982) 41-62.
  2. Borghetti M., Cinnirella S., Magnani F., Impact of long term drought on xylem embolism and growth in Pinus halepensis Mill., Trees 12 (1998) 187-195.
  3. Brodribb T., Hill R.S., The importance of xylem constraints in the distribution of conifer species, New Phytol. 143 (1999) 365-372.
  4. Cochard H., Vulnerability of several conifers to air embolism, Tree Physiol. 11 (1992) 73-83.
  5. Engelbrecht B., Velez V., Tyree M.T., Hydraulic conductance of two co-occuring neotropical understory shrubs with different habitat preferences, Ann. For. Sci. 57 (2000) 201-208.
  6. Grunwald C., Schiller G., Needle xylem water potential and water saturation deficit in provenances of Pinus halepensis Mill. and Pinus brutia Ten., For. méditerr. 10 (1988) 407-414.
  7. Hargrave K.R., Kolb K.J., Ewers F.W., Davis S.D., Conduit diameter and drought-induced embolism in Salvia mellifera Greene (Labiatae), New Phytol. 126 (1994) 695-705.
  8. Jarbeau A., Ewers F.W., Davis S.D., The mechanism of water-stress-induced embolism in two species of chaparral shrubs, Plant Cell Environ. 18 (1995) 189-196.
  9. Kavanagh K.L., Bond B.J., Aitken S.N., Gartner B.L., Knowe S., Shoot and root vulnerability to xylem cavitation in four populations of Douglas-fir seedlings, Tree Physiol. 19 (1999) 31-37.
  10. Kolb K.J., Sperry J.S., Differences in drought adaptation between subspecies of sagebrush (Artemisia tridentata), Ecology 80 (1999) 2373-2384.
  11. Lemoine D., Peltier J.P., Marigo G., Comparative studies of the water relations and the hydraulic characteristics in Fraxinus excelsior, Acer pseudoplatanus and A. opalus trees under soil water contrasted conditions, Ann. For. Sci. 58 (2001) 723-731.
  12. Linton M.J., Sperry J.S., Williams D.G., Limits to water transport in Juniperus osteosperma and Pinus edulis: implications for drought tolerance and regulation of transpiration, Funct. Ecology 42 (1998) 317-380.
  13. Maherali H., DeLucia E.H., Xylem conductivity and vulnerability to cavitation of ponderosa pine growing in contrasting climate, Tree Physiol. 20 (2000) 859-867.
  14. Pammenter N.W., Vander Willingen C., A mathematical and statistical analysis of the curves illustrating vulnerability of xylem cavitation, Tree Physiol. 18 (1998) 589-593.
  15. Petty J.A., Puritch G.S., The effects of drying on the structure and permeability of the wood of Abies grandis, Wood Sci. Technol. 4 (1970) 140-154.
  16. Pi nol J., Sala A., Ecological implications of xylem cavitation for several Pinaceae in the Pacific Northern USA, Funct. Ecology 14 (2000) 538-545.
  17. Pockman W.T., Sperry J.S., Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation, Amer. J. Bot. 87 (2000) 1287-1299.
  18. Salleo S., LoGullo M.A., Drought resistance strategies and vulnerability to cavitation of some Mediterranean sclerophyllous trees, in: Borghetti M., Grace J., Raschi A. (Eds.), Water transport in plant under climatic stress, Cambridge University Press, Cambridge, 1993, pp. 99-113.
  19. Siau J.F., Transport processes in wood, Springer-Verlag, Berlin, 1984.
  20. Sparks J.P., Black R.A., Regulation of water loss in populations of Populus trichocarpa: the role of stomatal control in preventing xylem cavitation, Tree Physiol. 19 (1999) 453-459.
  21. Sperry J.S., Ikeda T., Xylem cavitation in roots and stems of Douglas-fir and white fir, Tree Physiol. 17 (1997) 275-280.
  22. Sperry J.S., Saliendra N.Z., Intra- and inter-plant variation in xylem cavitation in Betula occidentalis, Plant Cell Environ. 17 (1994) 1233-1241.
  23. Sperry J.S., Tyree M.T., Mechanism of water stress-induced xylem embolism, Plant Physiol. 88 (1988) 581-587.
  24. Sperry J.S., Tyree M.T., Water-stress-induced xylem embolism in three species of conifers, Plant Cell Environ. 13 (1990) 427-436.
  25. Sperry J.S., Nichols K.L., Sullivan J.E.M., Eastlack S.E., Xylem embolism in ring-porous, diffuse-porous and coniferous trees of northern Utah and interior Alaska, Ecology 75 (1994) 1736-1752.
  26. Tognetti R., Longobucco A., Raschi A., Vulnerability of xylem to embolism in relation to plant hydraulic resistance in Quercus pubescens and Quercus ilex co-occuring in a Mediterranean coppice stand in central Italy, New Phytol. 139 (1998) 437-447.
  27. Tognetti R., Michelozzi M., Giovannelli A., Geographical variation in water relations, hydraulic architecture and terpene composition of Aleppo pine seedlings from Italian provenances, Tree Physiol. 17 (1997) 241-250.
  28. Tyree M.T., Ewers F.W., The hydraulic architecture of trees and others woody plants, New Phytol. 119 (1991) 345-360.
  29. Tyree M.T., Ewers F.W., Hydraulic architecture of woody tropical plants, in: Mulkey S.S., Chazdon R.L., Smith A.P. (Eds.), Tropical Forest Plant Ecophysiology, Chapman et Hall, 1996, pp. 218-241.
  30. Tyree M.T., Davis S.D., Cochard H., Biophysical perspectives of xylem evolution: is there a tradeoff hydraulic efficiency for vulnerability to dysfunction, IAWA Journal 15 (1994) 335-360.
  31. Zimmermann M.H., Xylem structure and the ascent of sap, Springer-Verlag, Berlin, 1983.

Abstract

Copyright INRA, EDP Sciences