Free access
Issue
Ann. For. Sci.
Volume 59, Number 7, November 2002
Page(s) 713 - 722
DOI http://dx.doi.org/10.1051/forest:2002059

References

  1. Aerts R., The advantages of being evergreen, Trends Ecol. Evol. 10 (1995) 402-406.
  2. Aerts R., Nutrient resorption from senescing leaves of perennials: are there general patterns?, J. Ecol. 84 (1996) 597-608.
  3. Aerts R., Chapin F.S.III, The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns, Adv. Ecol. Res. 30 (2000) 1-67.
  4. Andrews J.A., Siccama T.G., Retranslocation of calcium and magnesium at the heartwood-sapwood boundary in Atlantic white cedar, Ecology 76 (1995) 659-663.
  5. Andrews J.A., Siccama T.G., Vogt K.A., The effect of soil nutrient availability on retranslocation of Ca, Mg and K from senescing sapwood in Atlantic white cedar, Plant Soil 208 (1999) 117-123.
  6. Attiwill P.M., Nutrient cycling in a Eucalyptus obliqua (L'Hérit.) forest. IV. Nutrient uptake and nutrient return, Aust. J. Bot. 28 (1980) 199-222.
  7. Augusto L., Ranger J., Ponette Q., Rapp M., Relationships between forest tree species, stand production and stand nutrient amount, Ann. For. Sci. 57 (2000) 313-324.
  8. Bamber R.K., Heartwood, its function and formation, Wood Sci. Technol. 10 (1976) 1-8.
  9. Bamber R.K., Fukazawa K., Sapwood and heartwood: a review, Forestry Abst. 46 (1985) 567-580.
  10. Beadle N.C.W., White G.J., The mineral content of the trunks of some Australian woody plants, Proc. Ecol. Soc. Aust. 3 (1968) 55-60.
  11. Bondietti E.A., Momoshima N., Shortle W.C., Smith K.T., A historical perspective on divalent cation trends in red spruce stemwood and the hypothetical relationship to acidic deposition, Can. J. For. Res. 20 (1990) 1850-1858.
  12. Braun H.P., Funktionelle Histologie der sekundären Sprossachse. I. Das Holz, Borntraeger, Berlin, 1970.
  13. Chun L., Hui-Yi H., Tree-ring element analysis of Korean pine (Pinus koraiensis Sieb. et Zucc.) and Mongolian oak (Quercus mongolica Fisch. ex Turcz.) from Changai Mountain, north-east China, Trees 6 (1992) 103-108.
  14. Clément A., Janin G., Étude comparée de la répartition des principaux cations et du phosphore dans une tige de peuplier "Fritzi-Pauley", Plant Soil 45 (1976) 543-554.
  15. Colin-Belgrand M., Ranger J., Bouchon J., Internal translocation in chestnut tree stemwood: III. Dynamics across an age series of Castanea sativa Miller, Ann. Bot. 78 (1996) 729-740.
  16. Colin-Belgrand M., Ranger J., d'Argouges S., Transferts internes d'éléments nutritifs dans le bois de châtaignier (Castanea sativa Miller) : approche dynamique sur une chronoséquence de peuplements. I. Distribution des éléments minéraux, Acta Oecol. 14 (1993) 653-680.
  17. Cutter B.E., Guyette R.P., Anatomical, chemical and ecological factors affecting tree species choice in dendrochemistry studies, J. Environ. Qual. 22 (1993) 611-619.
  18. Dagnelie P., Théorie et méthodes statistiques. II, Les Presses agronomiques de Gembloux, Gembloux, 1975.
  19. Dambrine E., Le Goaster S., Ranger J., Croissance et nutrition minérale d'un peuplement d'épicéa sur sol pauvre. III. Prélèvement racinaire et translocation d'éléments minéraux au cours de la croissance, Acta Oecol. 12 (1991) 791-808.
  20. Denaeyer-De Smet S., Teneurs en éléments biogènes des tapis végétaux dans les forêts caducifoliées d'Europe, in: Duvigneaud P. (Ed.), Productivité des écosystèmes forestiers, Actes du Colloque de Bruxelles, Unesco, Paris, 1971, pp. 515-525.
  21. De Visser P.H.B., The relations between chemical composition of oak tree rings, leaf, bark and soil solution in a partly mixed stand, Can. J. For. Res. 22 (1992) 1824-1831.
  22. DeWalle D.R., Swistock B.R., Sayre R.G., Sharpe W.E., Spatial variations of sapwood chemistry with soil acidity in Appalachian forests, J. Environ. Qual. 20 (1991) 486-491.
  23. Duvigneaud P., Denaeyer-De Smet S., Biomass, productivity and mineral cycling in mixed forests in Belgium, in: Young H.E. (Ed.), Symposium on primary productivity and mineral cycling in natural ecosystems, University of Maine Press, Orono, 1968, pp. 167-186.
  24. Duvigneaud P., Denaeyer-De Smet S., Biological cycling of minerals in temperate deciduous forests, in: Reichle D.E. (Ed.), Ecological studies 1, Springer-Verlag, Berlin, 1970, pp. 199-225.
  25. Eckstein R.L., Karlsson P.S., Weih M., Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate-arctic regions, New Phytol. 143 (1999) 177-190.
  26. Fiedler H.-J., Höhne H., Vorkommen und Gehalt der Makronährstoffe in Wald baümen, Wiss. Zeits. Techn. Univ. Dresden 14 (1965) 989-999.
  27. Frey-Wyssling A., Bosshard H.H., Cytology of the ray-cells in sapwood and heartwood, Holzforsch. 13 (1959) 129-137.
  28. Grubb P.J., Edwards P.J., Studies of mineral cycling in a montane rain forest in New Guinea. III. The distribution of mineral elements in the above ground material, J. Ecol. 70 (1982) 623-648.
  29. Hart J.H., Morphological and chemical differences between sapwood, discoloured sapwood and heartwood in black locust and osage orange, For. Sci. 14 (1968) 334-338.
  30. Häsänen E., Huttunen S., Acid deposition and the element composition of pine tree rings, Chemosphere 18 (1989) 1913-1920.
  31. Helmisaari H.-S., Siltala T., Variation in nutrient concentrations of Pinus sylvestris stems, Scand. J. For. Res. 4 (1989) 443-451.
  32. Hillis W.E., Heartwood and tree exudates, Springer-Verlag, Berlin, 1987.
  33. Jane F.W., The structure of wood, Adam and Charles Black, London, 1954.
  34. Janin G., Clément A., Mise en évidence de cristaux de carbonate de calcium dans le bois des peupliers. Conséquences sur la répartition des ions minéraux liée à la duraminisation, Ann. Sci. For. 29 (1972) 67-105.
  35. Kashuba-Ockenberry L.A., De Walle D.R., Dendrochemical response to soil liming in scarlet oak, Can. J. For. Res. 24 (1994) 564-567.
  36. Killingbeck K.T., Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency, Ecology 77 (1996) 1716-1727.
  37. Lambers H., Chapin F.S.III, Pons T.L., Plant Physiological Ecology, Springer-Verlag, Berlin, 1998.
  38. Lambert M.J., Inorganic constituents in wood and bark of New South Wales forest tree species, Forestry Commiss. New South Wales, Research Note 45 (1981) 1-43.
  39. Lambert M.J., Turner J., Redistribution of nutrients in subtropical rainforest trees, Proc. Linn. Soc. New South Wales 111 (1989) 1-10.
  40. Lévy G., Bréchet C., Becker M., Element analysis of tree rings in pedunculate oak heartwood: an indicator of historical trends in the soil chemistry, related to atmospheric deposition, Ann. Sci. For. 53 (1996) 685-696.
  41. Long R.P., Davis D.D., Major and trace element concentrations in surface organic layers, mineral soil, and white oak xylem downwind from a coal-fired power plant, Can. J. For. Res. 19 (1989) 1603-1615.
  42. Magel E.A., Höll W., Storage carbohydrates and adenine nucleotides in trunks of Fagus sylvatica L. in relation to discoloured wood, Holzforschung 47 (1993) 19-24.
  43. Majumdar S.K., Halma J.R., Cline S.W., Rieker D., Daehler C., Zelnick R.W., Saylor T., Geist S., Tree ring growth and elemental concentrations in wood cores of oak species in Eastern Pennsylvania: possible influences of air pollution and acidic deposition, Environ. Technol. 12 (1991) 41-49.
  44. Marschner H., Mineral nutrition of higher plants, Academic Press Inc., San Diego CA, 1995.
  45. Martin J.G., Kloeppel B.D., Schaefer T.L., Kimbler D.L., McNulty S.G., Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree species, Can. J. For. Res. 28 (1998) 1648-1659.
  46. Masson G., Cabanis M.T., Cabanis J.C., Puech J.-L., The amounts of inorganic elements in cooperage oak, Holzforschung 51 (1997) 497-502.
  47. Matusiewicz H., Barnes R.M., Tree ring wood analysis after hydrogen peroxide pressure decomposition with inductively coupled plasma atomic emission spectrometry and electrothermal vaporization, Anal. Chem. 57 (1985) 406-411.
  48. McLaughlin S.B., Wimmer R., Calcium physiology and terrestrial ecosystem processes, New Phytol. 142 (1999) 373-417.
  49. McMillin C.W., Mineral content of loblolly pine wood as related to specific gravity, growth rate and distance from pith, Holzforschung 24 (1970) 152-157.
  50. Merrill W., Cowling E.B., Role of nitrogen in wood deterioration: amounts and distribution in tree stems, Can. J. Bot. 44 (1966) 1555-1580.
  51. Miller R.B., Plant nutrients in hard beech. I. The immobilisation of nutrients, N. Z. J. Sci. 6 (1963) 365-377.
  52. Momoshima N., Bondietti E.A., Cation binding in wood: applications to understanding historical changes in divalent cation availability to red spruce, Can. J. For. Res. 20 (1990) 1840-1849.
  53. Momoshima N., Eto I., Kofuji H., Takashima Y., Koike M., Imaizumi Y., Harada T., Distribution and chemical characteristics of cations in annual rings of Japanese Cedar, J. Envir. Qual. 24 (1995) 1141-1149.
  54. Myre R., Camiré‰ C., Distribution de P, K, Ca, Mn et Mg dans la tige des mélèzes européen et laricin, Ann. Sci. For. 51 (1994) 121-134.
  55. Nambiar E.K.S., Fife D.N., Nutrient retranslocation in temperate conifers, Tree Physiol. 9 (1991) 185-207.
  56. Okada N., Katayama Y., Nobuchi T., Ishimaru Y., Aoki A., Trace elements in the stems of trees. V. Comparison of radial distributions among softwood stems, Mokuzai Gakkaishi 39 (1993) 111-118.
  57. Okada N., Katayama Y., Nobuchi T., Ishimaru Y., Aoki A., Trace elements in the stems of trees. VI. Comparisons of radial distributions among hardwood stems, Mokuzai Gakkaishi 39 (1993) 1119-1127.
  58. Oshima Y., Primary Production team, Primary production, in: Kitazawa Y. (Ed.), Ecosystem analysis of the subalpine coniferous forest of the Shigayama IBP area, central Japan, University of Tokyo Press, Tokyo, 1977, pp. 125-134.
  59. Ostrofsky A., Jellison J., Smith K.T., Shortle W.C., Changes in cation concentrations in red spruce wood decayed by brown rot and white rot fungi, Can. J. For. Res. 27 (1997) 567-571.
  60. Panshin A.J., De Zeeuw C., Braun H.P., Textbook of wood technology. I. Structure, identification, uses, and properties of the commercial woods of the United States, McGraw-Hill, New York, 1964.
  61. Penninckx V., Meerts P., Herbauts J., Gruber W., Ring width and element concentrations in beech (Fagus sylvatica L.) from a periurban forest in central Belgium, For. Ecol. Manage. 113 (1999) 23-33.
  62. Ranger J., Étude de la minéralomasse et du cycle biologique dans deux peuplements de Pin laricio de Corse, dont l'un a été fertilisé à la plantation, Ann. Sci. For. 38 (1981) 127-158.
  63. Riitters K.H., Ohmann L.F., Grigal D.F., Woody tissue analysis using an element ratio technique (DRIS), Can. J. For. Res. 21 (1991) 1270-1277.
  64. Saka S., Mimori R., The distribution of inorganic constituents in white birch wood as determined by SEM-EDXA, Mokuzai Gakkaishi 40 (1994) 88-94.
  65. Schlesinger W.H., Biogeochemistry. An analysis of global change, Academic Press, San Diego, 1997.
  66. Smith K.T., Shortle W.C., Tree biology and dendrochemistry, in: Dean J.S., Meko D.M., Swetnam T.W. (Eds.), Tree rings, environment and humanity, Radiocarbon, 1996, pp. 629-635.
  67. Stewart C.M., Excretion and heartwood formation on living trees, Science 153 (1966) 1068-1074.
  68. Takashima Y., Koike M., Imaizumi Y., Harada T., Distribution and extraction behavior of elements in annual rings of Cryptomeria japonica and Abies firma, Bunseki Kagaku 43 (1994) 891-895.
  69. Taneda K., Ota M., Nagashima M., The radial distribution and concentration of several chemical elements in woods of five Japanese species, Mokuzai Gakkaishi 32 (1986) 833-841.
  70. Tsutsumi T., Kawahara T., Shidei T., The circulation of nutrients in forest ecosystem. I. On the amount of nutrients contained in the above-ground parts of single tree and of stand, J. Jap. For. Soc. 50 (1968) 66-74.
  71. Turner J., Lambert M.J., Nutrient cycling within a 27-year-old Eucalyptus grandis plantation in New South Wales, For. Ecol. Manage. 6 (1983) 155-168.
  72. Wardell J.F., Hart J.H., Radial gradients of elements in White Oak wood, Wood Sci. 5 (1973) 298-303.
  73. Watmough S.A., Hutchinson T.C., Sager E.P.S., Changes in tree ring chemistry in sugar maple (Acer saccharum) along an urban-rural gradient in southern Ontario, Environ. Pollut. 101 (1998) 381-390.
  74. Woodwell G.L., Whittaker R.H., Houghton R.A., Nutrient concentrations in plants in the Brookhaven oak-pine forest, Ecology 56 (1975) 318-332.
  75. Wright T.W., Will G.M., The nutrient content of Scots and Corsican pines growing on sand dunes, Forestry 30 (1957) 13-25.
  76. Ziegler H., Biologische Aspekte der Kernholzbildung, Holz Roh Werkst. 26 (1968) 61-68.
  77. Zimmermann M.H., Brown C.L., Trees, structure and function, Springer, Berlin, 1974.

Abstract

Copyright INRA, EDP Sciences