Free access
Issue
Ann. For. Sci.
Volume 61, Number 3, April-May 2004
Page(s) 235 - 241
DOI http://dx.doi.org/10.1051/forest:2004016
References of Ann. For. Sci. 61 235-241
  1. Aussenac G., Le cèdre, essai d'interprétation bioclimatique et écophysiologique, Bull. Soc. Bot. Fr. 131 (1984) 385-398.
  2. Berry J., Björkman O., Photosynthetic response and adaptation to temperature in higher plants, Ann. Rev. Plant Physiol. 31 (1980) 491-543.
  3. Bigras F.J., Selection of white spruce families in the context of climate change: heat tolerance, Tree Physiol. 20 (2000) 1227-1234 [PubMed].
  4. Bilger H.W., Schreiber U., Lange O.L., Determination of leaf heat resistance: comparative investigation of chlorophyll fluorescence changes and tissue necrosis methods, Oecologia 63 (1984) 256-262.
  5. Butler W.L., Energy distribution in the photochemical apparatus of photosynthesis, Ann. Rev. Plant Physiol. 29 (1978) 345-378.
  6. Dreyer E., Le Roux X., Montpied P., Daudet F.A., Masson F., Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species, Tree Physiol. 21 (2001) 223-232 [PubMed].
  7. Epron D., Effects of drought on photosynthesis and on the thermotolerance of photosystem II in seedlings of cedar (Cedrus atlantica and C. libani), J. Exp. Bot. 48 (1997) 1835-1841 [CrossRef].
  8. Epron D., The temperature dependence of photoinhibition in leaves of Phaseolus vulgaris L. Influence of CO2 and O2 concentrations, Plant Sci. 124 (1997) 1-8 [CrossRef].
  9. Genty B., Briantais J.M., Baker N.R., The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence, Biochim. Biophys. Acta. 990 (1989) 87-92.
  10. Georgieva K., Yordanov I., Temperature dependence of chlorophyll fluorescence parameters of pea seedlings, J. Plant Physiol. 142 (1993) 151-155.
  11. Ghouil H., Montpied P., Epron D., Ksontini M., Hanchi B., Dreyer E., Thermal optima of photosynthetic functions and thermostability of photochemistry in cork oak seedlings, Tree Physiol. 23 (2003) 1031-1039 [PubMed].
  12. Havaux M., La fluorescence de la chlorophylle in vivo : quelques concepts appliqués à l'étude de la résistance de la photosynthèse aux contraintes de l'environnement, in: Tolérance à la sécheresse des céréales en zone méditerranéenne. Diversité génétique et amélioration variétale, Montpellier, France, Paris, 1992.
  13. Havaux M., Stress tolerance of photosystem II in vivo. Antagonistic effects of water, heat and photoinhibition stresses, Plant Physiol. 100 (1992) 424-432.
  14. Havaux M., Characterization of thermal damage to the photosynthetic electron transport system in potato leaves, Plant Sci. 94 (1993) 19-33 [CrossRef].
  15. Havaux M., Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures, Plant Cell Environ. 16 (1993) 461-467.
  16. Havaux M., Strasser R.J., Greppin H., In vivo photoregulation of photochemical and non-photochemical deactivation of photosystem II in intact plant leaves, Plant Physiol. Biochem. 28 (1990) 735-746.
  17. Havaux M., Tardy F., Ravenel J., Chanu D., Parot P., Thylakoid membrane stability to heat stress studied by flash spectroscopic measurement of the electochromic shift in intact potato leaves: influence of the xanthophyll content, Plant Cell Environ. 19 (1996) 1359-1368.
  18. Heckathorn S.A., Downs C.A., Sharkey T.D., Coleman J.S., The small methionine rich chloroplast Heat Shock Protein protects photosystem II electron transport during heat stress, Plant Physiol. 116 (1998) 439-444 [CrossRef] [PubMed].
  19. Ivanov A.G., Kitcheva M.I., Christov A.M., Popova L.P., Effects of abscissic acid treatment on the thermostability of the photosynthetic apparatus in barleys chloroplasts, Plant Physiol. 98 (1992) 1228-1232.
  20. Karim M.A., Fracheboud Y., Stamp P., Photosynthetic activity of developing leaves of Zea mays is less affected by heat stress than that of developed leaves, Physiol. Plant. 105 (1999) 685-693 [CrossRef].
  21. Knight C.A., Ackerly D.D., An ecological and evolutionary analysis of photosynthetic thermotolerance using the temperature-dependent increase in fluorescence, Oecologia 130 (2002) 505-514 [CrossRef].
  22. Kolb P.F., Robberecht R., High temperature and drought stress effects on survival of Pinus ponderosa seedlings, Tree Physiol. 16 (1996) 665-672 [PubMed].
  23. Ladjal M., Epron D., Ducrey M., Effects of drought preconditioning on thermotolerance of photosystem II and susceptibility of photosynthesis to heat stress in cedar seedlings, Tree Physiol. 20 (2000) 1235-1241 [PubMed].
  24. Larcher W., Wagner J., Thammathaworn A., Effects of superimposed temperature stress on in vivo chlorophyll fluorescence of Vigna unguiculata under saline stress, J. Plant Physiol. 136 (1990) 92-102.
  25. Li Z., Oda M., Okada K., Sasaki H., Changes in thermotolerance of photosynthetic apparatus in cucumber leaves in response to water stress and exogenous ABA treatments, J. Japan Soc. Hortic. Sci. 65 (1996) 587-594.
  26. Logan B.A., Monson R.K., Thermotolerance of leaf discs from four isoprene-emitting species is not enhanced by exposure to exogenous isoprene, Plant Physiol. 120 (1999) 821-825 [CrossRef] [PubMed].
  27. Lu C., Zhang J., Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants, J. Exp. Bot. 50 (1999) 1199-1206 [CrossRef].
  28. Méthy M., Gillon D., Houssard C., Temperature-induced changes of photosystem II activity in Quercus ilex and Pinus halepensis, Can. J. For. Res. 27 (1997) 31-38 [CrossRef].
  29. Murata N., Los D.A., Membrane fluidity and temperature perception, Plant Physiol. 115 (1997) 875-879 [PubMed].
  30. Pastenes C., Horton P., Resistance of photosynthesis to high temperature in two bean varieties (Phaseolus vulgaris), Photosynth. Res. 62 (1999) 197-203 [CrossRef].
  31. Robakowski, P., Montpied P., Dreyer E., Temperature response of photosynthesis in silver fir (Abies alba) seedlings, Ann. For. Sci. 59 (2002) 163-170 [EDP Sciences] [CrossRef].
  32. Schreiber U., Berry J.A., Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus, Planta 136 (1977) 223-238.
  33. Seemann J.R., Downton W.J.S., Berry J.A., Temperature and leaf osmotic potential as factors in the acclimation of photosynthesis to high temperature in desert plants, Plant Physiol. 80 (1986) 926-930.
  34. Sharkey T.D., Singsaas E.L., Why plants emit isoprene, Nature 374 (1995) 769.
  35. Singsaas E.L., Laporte M.M., Shi J.-Z., Monson R.K., Bowling D.R., Johnson K., Lerdau M., Jasentuliytana A., Sharkey T.D., Kinetics of leaf temperature fluctuation affect isoprene emission from red oak (Quercus rubra) leaves, Tree Physiol. 19 (1999) 917-924 [PubMed].
  36. Smillie R.M., Hetherington S.E., Stress tolerance and stress-induced injury in crop plants measured by chlorophyll fluorescence in vivo: chilling, freezing, ice cover, heat, and high light, Plant Physiol. 72 (1983) 1043-1050.
  37. Taub D.R., Seemann J.R., Coleman J.S., Growth in elevated CO2 protects photosynthesis against high-temperature damage, Plant Cell Environ. 23 (2000) 649-656 [CrossRef].
  38. Teskey R.O., Will R.E., Acclimation of loblolly pine (Pinus taeda) seedlings to high temperatures, Tree Physiol. 19 (1999) 519-525 [PubMed].
  39. Valladares F., Pearcy R., Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia. Plant Cell Environ. 20 (1997) 25-36.