Free access
Issue
Ann. For. Sci.
Volume 61, Number 7, October-November 2004
Page(s) 653 - 659
DOI http://dx.doi.org/10.1051/forest:2004067
References of Ann. For. Sci. 61 653-659
  1. Baskerville G.L., Use of logarithmic regression in the estimation of plant biomass, Can. J. For. Res. 2 (1972) 49-53.
  2. Björklund L., Identifying heartwood-rich stands or stems of Pinus sylvestris by using inventory data, Silva Fenn. 33 (1999) 119-129.
  3. Bond-Lamberty B., Wang C., Gower S.T., Aboveground and belowground biomass and sapwood area allometric equations for six Boreal tree species of northern Manitoba, Can. J. For. Res. 32 (2002) 1441-1450 [CrossRef].
  4. Braekke F.H., Distribution and yield of biomass from young Pinus sylvestris and Picea abies stands on drained and fertilized peatland, Scand. J. For. Res. 1 (1986) 49-66.
  5. Béland M., Agestam E., Ekö P.M., Gemmel P., Nilsson U., Scarification and seedfall affects natural regeneration of Scots pine under two shelterwood densities and a clear-cut in Southern Sweden, Scand. J. For. Res. 15 (2000) 247-255.
  6. Carroll R.J., Ruppert D., Transformation and weighting in regression, Chapman and Hall, New York, 1988.
  7. Claesson S., Sahlén K., Lundmark T., Functions for biomass estimation of young Pinus sylvestris, Picea abies and Betula spp. from stands in Northern Sweden with high stand densities, Scand. J. For. Res. 16 (2001) 138-146.
  8. Dong P.H., Diep D.Q., Schüler G., Kiefern-Naturverjüngung in Pfälzerwald, Forst u. Holz 58 (2003) 83-86 (in German).
  9. Gothe H., Pflanzenzahlen und Oberhöhen in einigen charakterischen Kiefern-Naturverjüngungen im Gräflichen Forstamt Schlitz, Allg. Forst- u. J.-Ztg. 127 (1956) 228-232 (in German).
  10. Hoffmann C.W., Usoltsev V.A., Modelling root biomass distribution in Pinus sylvestris forests of the Turgai Depression of Kazachstan, For. Ecol. Manage. 149 (2001) 103-114.
  11. Jalkanen A., Covariances between morphological characteristics in bareroot Pinus sylvestris nursery stock, Scand. J. For. Res. 8 (1993) 540-549.
  12. KMI, Precipitation data of station Viersel, Royal Meteorological Institute of Belgium, Ukkel, 2003.
  13. Kupka I., Natural regeneration at different microclimatic sites in Zatec region, J. For. Sci. (Lesnictví) 48 (2002) 441-450.
  14. Lim M.T., Cousens J.E., The internal transfer of nutrients in a Scots pine stand. I. Biomass components, current growth and their nutrient content, Forestry 59 (1986) 1-16.
  15. Litton C.M., Ryan M.G., Tinker D.B., Knight D.H., Belowground and aboveground biomass in young postfire lodgepole pine forests of contrasting tree density, Can. J. For. Res. 33 (2003) 351-363 [CrossRef].
  16. Längström B., Piene H., Fleming R., Hellqvist C., Shoot and needle losses in Scots pine: experimental design and techniques for estimating needle biomass of undamaged and damaged branches, in: McManus M.L., Liebhold A.M. (Eds.), Proceedings: Population Dynamics, Impacts, and Integrated Management of Forest Defoliating Insects, General Technical Report NE-247, USDA Forest Service, 1998, pp. 230-246.
  17. Malcolm D.C., Mason W.L., Clarke G.C., The transformation of conifer forests in Britain - regeneration, gap size and silvicultural systems, For. Ecol. Manage. 151 (2001) 7-23.
  18. Monserud R.A., Marshall J.D., Allometric crown relations in three northern Idaho conifer species, Can. J. For. Res. 29 (1999) 521-535 [CrossRef].
  19. Návar J., Méndez E., Dale V., Estimating stand biomass in the Tamaulipan thornscrub of northeastern Mexico, Ann. For. Sci. 59 (2002) 813-821 [EDP Sciences] [CrossRef].
  20. Neter J., Kutner M.H., Nachtsheim C.J., Wasserman W., Applied Linear Statistical Models, WCB McGraw-Hill, Boston, 1996.
  21. Nilsson U., Gemmel P., Johansson U., Karlsson M., Welander T., Natural regeneration of Norway spruce, Scots pine and birch under Norway spruce shelterwoods of varying densities on a mesic-dry site in southern Sweden, For. Ecol. Manage. 161 (2002) 133-145.
  22. Oleksyn J.J., Reich P.B., Chalupka W., Tjoelker M.G., Differential above- and below-ground biomass accumulation of European Pinus sylvestris populations in a twelve-year-old provenance experiment, Scand. J. For. Res. 14 (1999) 7-17.
  23. Ovington J.D., Madgwick H.A.I., Distribution of organic matter and plant nutrients in a plantation of Scots pine, For. Sci. 5 (1959) 344-355.
  24. Parresol B.R., Assessing tree and stand biomass: a review with examples and critical comparisons, For. Sci. 45 (1999) 573-593.
  25. Payandeh B., Choosing regression models for biomass prediction equations, For. Chron. 57 (1981) 229-232.
  26. Persson H., Root dynamics in a young Scots pine stand in central Sweden, Oikos 30 (1978) 508-519.
  27. Reed D.D., Mroz G.D., Liechty H.O., Jones E.A., Cattelino P.J., Balster N.J., Zhang Y., Above- and below-ground biomass of precompetitive red pine in northern Michigan, Can. J. For. Res. 25 (1995) 1064-1069.
  28. Richardson A.D., Bealle Statland C., Gregoire T.G., Root biomass distribution under three cover types in a patchy Pseudotsuga menziesii forest in western Canada, Ann. For. Sci. 60 (2003) 469-474 [EDP Sciences] [CrossRef].
  29. Seitz R., Untersuchungen zur natürlichen Verjüngung der Kiefer (Pinus sylvestris L.) in Bayern (Mittelfranken, Oberfranken und Oberpfalz), Dissertation, Forstwissenschaftliche Fakultät der Universität München, 1980 (in German).
  30. Ter-Mikaelian M.T., Korzukhin M., Biomass estimations for 65 North American tree species, For. Ecol. Manage. 97 (1997) 1-24.
  31. USDA, Keys to Soil Taxonomy, United States Department of Agriculture, Natural Resources Conservation Service, Soil Survey Staff, 1998.
  32. Wagner R.G., Ter-Mikaelian M.T., Comparison of biomass component equations for four species of northern coniferous tree seedlings, Ann. For. Sci. 56 (1999) 193-199.
  33. Wang J.R., Zhong A.L., Kimmins J.P., Biomass estimation errors associated with the use of published regression equations of Paper birch and Trembling aspen, North. J. Appl. For. 19 (2002) 128-136.
  34. West G.B., Brown J.H., Enquist B.J., A general model for the structure and allometry of plant vascular systems, Nature 400 (1999) 664-667 [CrossRef].
  35. Zerbe S., Restoration of natural broad-leaved woodland in Central Europe on sites with coniferous forest plantations, For. Ecol. Manage. 167 (2002) 27-42.
  36. Zianis D., Mencuccini M., Aboveground biomass relationships for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, Northern Greece, and generalised equations for Fagus sp., Ann. For. Sci. 60 (2003) 439-448 [EDP Sciences] [CrossRef].
  37. Zianis D., Mencuccini M., On simplifying allometric analyses of forest biomass, For. Ecol. Manage. 187 (2004) 311-332.