Free access
Issue
Ann. For. Sci.
Volume 61, Number 8, December 2004
Page(s) 831 - 841
DOI http://dx.doi.org/10.1051/forest:2004084
References of Ann. For. Sci. 61 831-841
  1. Abdel-Gadir A.Y., Krahmer R.L., Estimating the age of demarcation of juvenile and mature wood in Douglas-fir, Wood Fiber Sci. 25 (1993) 242-249.
  2. Bendtsen B.A., Senft J.F., Mechanical and anatomical properties in individual growth rings of plantation grown cottonwood and loblolly pine, Wood Fiber Sci. 18 (1978) 23-28.
  3. Bhat K.M., Priya P.B., Rugmini P., Characterisation of juvenile wood in teak, Wood Sci. Technol. 34 (2001) 517-532 [CrossRef].
  4. Box G.E.P., Jenkins G.M., Time series analysis, San Francisco, 1970, 553 p.
  5. Cook J.A., Barbour R.J., The use of segmented regression analysis in the determination of juvenile and mature wood properties, Reports CFS No. 31, Forintek Canada, Corp., Vancouver, BC, 1989, 53 p.
  6. Danborg F., Density variations and demarcation of the juvenile wood in Norway spruce, Forskningsserien No.10-1994, Danish Forest and Landscape Research Institute, Lyngby, 1994, 78 p.
  7. Davidian M., Giltinan D.M., Nonlinear models for repeated measurement data, London, 1995, 359 p.
  8. Degron R., Nepveu G., Prévision de la variabilité intra- et interabre de la densité du bois de Chêne rouvre (Quercus petraea Liebl.) par modélisation de largeurs et des densités des bois initial et final en fonction de l'âge cambial, de la largeur de cerne et du niveau dans l'arbre, Ann. Sci. For. 53 (1996) 1019-1030.
  9. Di Lucca C.M., Juvenile-mature wood transition, in: Kellogg R.M., Second growth Douglas-fir: Its management and conversion for value, Special Publication, No. Sp-32, Forintek, Canada Crop., Vancouver, 1989, 173 p.
  10. Engel U., Einführung in die Mehrebenenalyse, Opladen, 1998, 280 p.
  11. Evans J.W., Senft J.F., Green D.W., Juvenile wood effect in red alder: analysis of physical and mechanical data to delineate juvenile and mature wood zones, For. Prod. J. 50 (2000) 75-87.
  12. Gallant A.R., Nonlinear statistical models, New York, 1987, 610 p.
  13. Goldstein H., Nonlinear multilevel models with an application to discrete response data, Biometrics 78 (1991) 45-51.
  14. Gregoire T.G., Schabenberger O., Barrett J.P., Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements, Can. J. For. Res. 25 (1995) 137-156.
  15. Guilley E., Hervé J.-C., Huber F., Nepveu G., Modelling variability of within-ring density components in Quercus petraea Liebl. with mixed-effect models and simulating the influence of contrasting silviculture on wood density, Ann. For. Sci. 56 (1999) 449-458.
  16. Koubaa A., Zhang S.Y.T., Makni S., Defining the transition from early wood to latewood in black spruce based on intra-ring wood density profiles from X-ray densitometry, Ann. For. Sci. 59 (2002) 511-518 [EDP Sciences] [CrossRef].
  17. Krahmer R.L., Fundamental anatomy of juvenile and mature wood, in: Proc. Technical Workshop: Juvenile wood - What does it mean to forest management and forest products? For. Prod. Res. Soc. Madison, 1986, 56 p.
  18. Kucera B., A hypothesis relating current annual height increment to juvenile and wood formation in Norway spruce, Wood Fiber Sci. 26 (1994) 152-167.
  19. Lindstrom M.J., Bates D.M., Nonlinear mixed effects models for repeated measures data, Biometrics 46 (1990) 673-687 [PubMed] [MathSciNet].
  20. Maguire D.A., Johnston S.R., Cahill J., Predicting branch diameters on second growth Douglas-fir from tree-level descriptors, Can. J. For. Res. 29 (1999) 1829-1840 [CrossRef].
  21. Meredieu C., Colin F., Hervé J.-C., Modelling branchiness of Corsican pine with mixed-effects models (Pinus nigra Arnold ssp. laricio (Poiret) Maire), Ann. For. Sci. 55 (1998) 359-374.
  22. Mörling T., Evaluation of annual ring width and ring density development following fertilisation and thinning of Scots pine, Ann. For. Sci. 59 (2002) 29-40 [EDP Sciences] [CrossRef].
  23. Mork E., Die Qualität des Fichten-Holzes unter Rücksichtnahme auf Schleif/Papierholz, Der Papier-Fabrikant 26 (1928) 741-747.
  24. Mothe F., Duchanois G., Zanier B., Leban J.M., Analyse microdensitométrique appliquée au bois: méthode de traitement des données utilisées à l'INRA-ERQB (programme CERD), Ann. Sci. For. 55 (1998) 301-313.
  25. Mutz R., Inhomogenität des Roh- und Werkstoffs Holz. Konzeptuelle, methodisch-statistische und empirische Implikationen für holzkundliche Untersuchungen, Hamburg, 1998, 336 p.
  26. Panshin A.J., de Zeeuw C., Textbook of Wood Technology, 4th ed. New York, 1980, 452 p.
  27. Pinheiro J.C., Bates D.M., Approximations to the log-likelihood function in the nonlinear mixed-effects model, J. Comp. Graph. Stat. 4 (1995) 12-35.
  28. Polge H., Établissement des courbes de variation de la densité du bois par exploration densitométrique de radiographies d'échantillons prélevés à la tarière sur des arbres vivants, Ann. Sci. For. 23 (1966) 1-206.
  29. Polge H., Fifteen years of wood radiation densitometry, Wood Sci. Technol. 12 (1978) 187-196 [CrossRef].
  30. Rendle B.J., Fast-grown coniferous timber - some anatomical considerations. Q. J. For. (1959) 1-7.
  31. Rendle B.J., Juvenile and adult wood, J. Inst. Wood Sci. 5 (1960) 58-61.
  32. Sauter U.H., Technologische Holzeigenschaften der Douglasie (Pseudotsuga menziesii (Mirb.) Franco) als Ausprägung unterschiedlicher Wachstumsbedingungen. Dissertation an der Forstwiss. Fakultät der Universität Freiburg, 1992, 221 p.
  33. Sauter U.H., Mutz R., Munro B.D., Determining juvenile-mature wood transition in Scots pine using latewood density, Wood Fiber Sci. 31 (1999) 416-425.
  34. Schweingruber F., Der Jahrring: Standort, Methodik, Zeit und Klima in der Dendrochronologie, Bern, 1983, 234 p.
  35. Wilhelmson L., Arlinger J., Spangeberg K., Lundquist S.-O., Grahn T., Hedenberg Ö., Olsson L., Models for predicting wood properties in stems of Picea abies and Pinus sylvestris in Sweden, Scand. J. For. Res. 17 (2002) 330-350.
  36. Wimmer R., Geoffrey M.D., Evans R., High resolution analysis of radial growth and wood density in Eucalyptus nitens, grown under different irrigation regimes, Ann. For. Sci. 59 (2002) 519-524 [EDP Sciences] [CrossRef].
  37. Wolfinger R.D., Laplace's approximation for nonlinear mixed models, Biometrika 80 (1993) 719-795.
  38. Wolfinger R.D., Fitting nonlinear mixed models with the new NLMIXED procedure, SAS Institute, Inc., Cary, N.C. No. 287, 1999, 120 p.
  39. Zhang S.Y., Eyono Owundi R., Nepveu G., Mothe F., Dhôte J., Modelling wood density in European oak (Quercus petraea and Quercus robur) and simulating the silvicultural influence, Can. J. For. Res. 23 (1993) 2587-2593.
  40. Zhu-Jian J., Nakano T., Hirakawa Y., Zhu J.J., Effects of radial growth rate on selected indices of juvenile and mature wood of the Japanese larch, J. Wood Sci. 46 (2000) 417-422 [CrossRef].
  41. Zobel B.J., Van Buijtenen J.P., Wood Variation. Its causes and control, Heidelberg, 1989.
  42. Zobel B.J., Tabert J.B., Applied forest tree improvement, New York, 1984.