Free access
Issue
Ann. For. Sci.
Volume 62, Number 7, November 2005
Page(s) 645 - 657
DOI http://dx.doi.org/10.1051/forest:2005071
References of Ann. For. Sci. 62 645-657
  1. Bartelink H.H., MAPFLUX: a spatial model of light transmission through forest canopies, report No. 15, Department of Forestry, Agricultural University, Wageningen, Netherlands, 1995, 31 p.
  2. Bégué A., Prince S.D., Hanan N.P., Roujean J.L., Shortwave radiation budget of Sahelian vegetation. 2. Radiative transfer models, Agric. For. Meteorol. 79 (1996) 97-112 [CrossRef].
  3. Berbigier P., Bonnefond J.M., Measurement and modelling of radiation transmission within a stand of maritime pine (Pinus pinaster), Ann. For. Sci. 52 (1995) 23-42.
  4. Brisson J., Reynolds J.F., The effect of neighbors on root distribution in a creosotebush (Larrea-Tridentata) population, Ecology 75 (1994) 1693-1702.
  5. Brunner A., A light model for spatially explicit forest stand models, For. Ecol. Manage. 107 (1998) 19-46 [CrossRef].
  6. Brunner A., Nigh G., Light absorption and bole volume growth of individual Douglas-fir trees, Tree Physiol. 20 (2000) 323-332 [PubMed].
  7. Canham C.D., An index for understory light levels in and around canopy gaps, Ecology 69 (1988) 1634-1638.
  8. Canham C.D., Denslow J.S., Platt W.J., Runkle J.R., Spies T.A., White P.S., Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests, Can. J. For. Res. 20 (1990) 620-631.
  9. Canham C.D., Coates K.D., Bartemucci P., Quaglia S., Measurement and modelling of spatially explicit variation in light transmission through interior cedar-hemlock forests of British Columbia, Can. J. For. Res. 29 (1999) 1775-1783 [CrossRef].
  10. Cescatti A., Modelling the Radiative transfer in discontinuous canopies of asymmetric crowns. I. Model structure and algorithms, Ecol. Model. 101 (1997) 263-274 [CrossRef].
  11. Chartier M., Bonchretien P., Allirand J.M., Gosse G., Utilisation des cellules au silicium amorphe pour la mesure du rayonnement photosynthétiquement actif (400-700 nm), Agronomie 9 (1989) 281-284.
  12. Chelle M., Andrieu B., Radiative models for architectural modeling, Agronomie 19 (1999) 225-240.
  13. Chen S.G., Ceulemans R., Impens I., A fractal-based Populus canopy structure model for the calculation of light interception, For. Ecol. Manage. 69 (1994) 97-110 [CrossRef].
  14. Cluzeau C., Dupouey J.L., Courbaud B., Polyhedral representation of crown shape. A geometric tool for growth modelling, Ann. Sci. For. 52 (1995) 297-306.
  15. Coll L., Balandier P., Picon-Cochard C., Prevosto B., Curt T., Competition for water between beech seedlings and surrounding vegetation in different light and vegetation composition conditions, Ann. For. Sci. 60 (2003) 593-600 [EDP Sciences] [CrossRef].
  16. Comeau P.G., LITE : A model for estimating light under Broadleaf and Conifer tree canopies, report No. 23, Ministry of Forests Research Program British Columbia, 1998, 4 p.
  17. Comeau P.G., Measuring light in forest, report No. 42, Ministry of Forests Research Program, British Columbia, 2000, 7 p.
  18. Comeau P.G., Heineman J.L., Predicting understory light microclimate from stand parameters in young paper birch (Betula papyrifera Marsh.) stands, For. Ecol. Manage. 180 (2003) 303-315 [CrossRef].
  19. Courbaud B., De Coligny F., Cordonnier T., Simulating radiation distribution in a heterogeneous Norway spruce forest on a slope, Agric. For. Meteorol. 116 (2003) 1-18 [CrossRef].
  20. Dai X., Influence of light conditions in canopy gaps on forest regeneration : a new gap light index and its application in a boreal forest in east-central Sweden, For. Ecol. Manage. 84 (1996) 187-197 [CrossRef].
  21. Dauzat J., Simulated plants and Radiative transfer simulations, in: Varlet-Grancher C., Bonhomme R., Sinoquet H. (Eds.), Crop structure and light microclimate: Characterization and applications, 1993, pp. 271-278.
  22. De Castro F., Fetcher N., Three dimensional model of the interception of light by a canopy, Agric. For. Meteorol. 90 (1998) 215-233 [CrossRef].
  23. De Castro F., Light spectral composition in tropical forest: measurement and model, Tree Physiol. 20 (2000) 49-56 [PubMed].
  24. De Coligny F., Site Capsis 4, http://coligny.free.fr/.
  25. De Coligny F., Ancelin P., Cornu G., Courbaud B., Dreyfus P., Goreaud F., Gourlet-Fleury S., Meredieu C., Orazio C., Saint-André L., Capsis: Computer-Aided Projection for Strategies In Silviculture: Open architecture for a shared forest-modelling platform, IUFRO Working Party S5.01-04 conference, September 2002, Harrison, British Columbia, Canada, 2002, pp. 371-380.
  26. Dhôte J.F., De Hercé E., Hyperbolic model for adjustment of sets of height diameter curves, Can. J. For. Res. 24 (1994) 1782-1790.
  27. Emborg J., Understorey light conditions and regeneration with respect to the structural dynamics of a near-natural temperate deciduous forest in Denmark, For. Ecol. Manage. 106 (1998) 83-95 [CrossRef].
  28. Endler J.A., The color of light in forests and its implications, Ecol. Monogr. 63 (1993) 1-27.
  29. Frech A., Leuschner C., Hagemeier M., Holscher D., Neighbor-dependent canopy dimensions of ash, hornbeam, and lime in a species-rich mixed forest (Hainich National Park, Thuringia), Forstwiss. Centralbl. 122 (2003) 22-35 [CrossRef].
  30. Gersonde R., Battles J.J., O'Hara K.L., Characterizing the light environment in Sierra Nevada mixed-conifer forests using a spatially explicit light model, Can. J. For. Res. 34 (2004) 1332-1342 [CrossRef].
  31. Groot A., A model to estimate light interception by tree crowns, applied to black spruce, Can. J. For. Res. 34 (2004) 788-799.
  32. Grote R., Estimation of crown radii and crown projection area from stem size and tree position, Ann. For. Sci. 60 (2003) 393-402 [EDP Sciences] [CrossRef].
  33. Hale S.E., The effect of thinning intensity on the below-canopy light in a Sitka spruce plantation, For. Ecol. Manage. 179 (2003) 341-349 [CrossRef].
  34. Hanan N.P., Enhanced two-layer radiative transfer scheme for a land surface model with a discontinuous upper canopy, Agric. For. Meteorol. 109 (2001) 265-281 [CrossRef].
  35. Heindl M., Winkler H., Vertical lek placement of forest-dwelling manakin species (Aves, Pipridae) is associated with vertical gradients of ambient light, Biol. J. Linn. Soc. 80 (2003) 647-658 [CrossRef].
  36. Kimes D.S., Smith J.A., Simulation of solar radiation absorption in vegetation canopies, Appl. Opt. 19 (1980) 2801-2811.
  37. Kimes D.S., Kirchner J.A., Radiative transfer model for heterogeneous 3-D scenes, Appl. Opt. 21 (1982) 4119-4129.
  38. Kimmins J.P., Forest ecology: a foundation for sustainable management, Macmillan Publ. Co., New York, 1997.
  39. Koop H., Forest Dynamics, SILVI-STAR: a comprehensive monitoring system, Springer-Verlag, Berlin, 1989.
  40. LeRoux X., Gauthier H., Begue A., Sinoquet H., Radiation absorption and use by humid savanna grassland: assessment using remote sensing and modelling, Agric. For. Meteorol. 85 (1997) 117-132 [CrossRef].
  41. MacFarlane D.W., Green E.J., Brunner A., Burkhart H.E., Predicting survival and growth rates for individual loblolly pine trees from light capture estimates, Can. J. For. Res. 32 (2002) 1970-1983 [CrossRef].
  42. MacFarlane D.W., Green E.J., Brunner A., Amateis R.L., Modeling loblolly pine canopy dynamics for a light capture model, For. Ecol. Manage. 173 (2003) 145-168 [CrossRef].
  43. McMurtrie R., Wolf L., A model of competition between trees and grass for radiation, water and nutrients, Ann. Bot. 52 (1983) 449-458.
  44. Meloni S., Sinoquet H., Assessment of the spatial distribution of light transmitted below young trees in an agroforestry system, Ann. Sci. For. 54 (1997) 313-333.
  45. Meloni S., A simplified description of the tree-dimensional structure of agroforestry trees for use with a Radiative transfer model, Agrofor. Syst. 43 (1999) 121-134 [CrossRef].
  46. Messier C., Doucet R., Ruel J.C., Claveau Y., Kelly C., Lechowicz M.J., Functional ecology of advance regeneration in relation to light in boreal forests, Can. J. For. Res. 29 (1999) 812-823 [CrossRef].
  47. Muth C.C., Bazzaz F.A., Tree canopy displacement at forest gap edges, Can. J. For. Res. 32 (2002) 247-254 [CrossRef].
  48. Muth C.C., Bazzaz F.A., Tree canopy displacement and neighbor-hood interactions, Can. J. For. Res. 33 (2003) 1323-1330 [CrossRef].
  49. Nigh G.D., Love B.A., Predicting crown class in three western conifer species, Can. J. For. Res. 34 (2004) 592-599 [CrossRef].
  50. Oker-Blom P., Kaufmann M.R., Ryan M.G., Performance of a canopy light interception model for conifer shoots, trees and stands, Tree Physiol. 9 (1991) 227-243 [PubMed].
  51. Parker G.G., Davis M.M., Moon Chapotin S., Canopy light transmittance in Douglas-fir-western hemlock stands, Tree Physiol. 22 (2002) 147-157 [PubMed].
  52. Piboule A., Influence de la structure du peuplement forestier sur la distribution de l'éclairement sous couvert. Cas d'une forêt hétérogène feuillue sur plateau calcaire, Thèse de Doctorat, École Nationale du Génie Rural, des Eaux et des Forêts, Nancy, 2005.
  53. Pritchard J.M., Comeau P.G., Effects of opening size and stand characteristics on light transmittance and temperature under young trembling aspen stands, For. Ecol. Manage. 200 (2004) 119-128 [CrossRef].
  54. Ricard J.P., Messier C., Delagrange S., Beaudet M., Do understory sapling respond to both light and below-ground competition? A field experiment in a north-eastern American hardwood forest and a literature review, Ann. For. Sci. 60 (2003) 749-756 [EDP Sciences] [CrossRef].
  55. Riegel G.M., Miller R.F., Krueger W.C., The effects of aboveground and belowground competition on understory species composition in a Pinus ponderosa forest, For. Sci. 41 (1995) 864-889.
  56. SAS Institute Inc., SAS System for Windows Version 8, 2000, Cary, NC: SAS Institute Inc.
  57. Song B., Chen J.Q., Desanker P.V., Reed D.D., Bradshaw G.A., Franklin J.F., Modeling canopy structure and heterogeneity across scales: From crowns to canopy, For. Ecol. Manage. 96 (1997) 217-229 [CrossRef].
  58. Sonohat G., Balandier P., Ruchaud F., Predicting solar radiation transmittance in the understory of even-aged coniferous stands in temperate forests, Ann. For. Sci. 61 (2004) 629-641 [EDP Sciences] [CrossRef].
  59. Stadt K.J., Lieffers V.J., MIXLIGHT: a flexible light transmission model for mixed-species forest stands, Agric. For. Meteorol. 102 (2000) 235-252 [CrossRef].
  60. Ter-Mikaelian M.T., Wagner R.G., Shropshire C., Bell F.W., Swanton C.J., Using a mechanistic model to evaluate sampling designs for light transmission through forest plant canopies, Can. J. For. Res. 27 (1997) 117-126 [CrossRef].
  61. Toutain F., Les humus forestiers : structure et mode de fonctionnement, Rev. For. Fr. 32 (1981) 449-479.
  62. Vera F.W.M., Establishment of trees and shrubs in relation to light and grazing, in: Vera F.W.M. (Ed.), Grazing ecology and forest history, Chapter 6, CABI Publishing, New York, 2000, pp. 287-368.
  63. Wang H., Baldocchi D.D., A numerical model for simulating the radiation regime within a deciduous forest canopy, Agric. For. Meteorol. 46 (1989) 313-337 [CrossRef].
  64. West P.W., Wells K.F., Method of application of a model to predict the light environment of individual tree crowns and its use in a eucalyptus forest, Ecol. Model. 60 (1992) 199-231 [CrossRef].
  65. Wetzel S., Burgess D., Understorey environment and vegetation response after partial cutting and site preparation in Pinus strobus L. stands, For. Ecol. Manage. 151 (2001) 43-59 [CrossRef].