Free access
Issue
Ann. For. Sci.
Volume 63, Number 4, May-June 2006
Page(s) 387 - 397
DOI http://dx.doi.org/10.1051/forest:2006019
Published online 17 May 2006
References of  Ann. For. Sci. 63 (2006) 387-397
  1. Ashton P.M.S., Yoon H.S., Thadani R., Berlyn G.P., Seedling leaf structure of New England maples (Acer) in relation to light environment, For. Sci. 45 (1999) 512-519.
  2. Bäck J., Vanderklein D.W., Topa M.A., Effects of elevated ozone on CO2 uptake and leaf structure in sugar maple under two light environments, Plant Cell Environ. 22 (1999) 137-147 [CrossRef].
  3. Baker F.S., A revised tolerance table, J. Forest. 47 (1949) 179-181.
  4. Burke J.J., Hatfield J.L., Plant morphological and biochemical responses to field water deficits. III: Effect of foliage temperature on the potential activity of glutathione reductase, Plant Physiol. 85 (1987) 100-103 [PubMed].
  5. Canham C.D., Berkowitz A.R., Kelly G.M., Ollinger S.V. Schnurr J., Biomass allocation and multiple resource limitation in tree seedlings, Can. J. For. Res. 26 (1996) 1521-1530.
  6. Canham C.D., Kobe R.K., Latty E.R., Chazdon R.L., Interspecific and intraspecific variation in tree seedlings survival: effects of allocation to roots versus carbohydrate reserves, Oecologia 121 (1999) 1-11 [CrossRef].
  7. Carlson R.W., Reduction in the photosynthetic rate of Acer, Quercus and Fraxinus species caused by sulphur dioxide and ozone, Environ. Pollut. 18 (1979) 159-170.
  8. Chappelka A.H., Chevone B.I., Tree responses to ozone, in: Lefohn A.S. (Ed.), Surface level ozone exposures and their effects on vegetation, Lewis Publishers Inc., 1991, pp. 271-324.
  9. Dizengremel P., Pétrini M., Effects of air pollutants on the pathway of carbohydrate breakdown, in: Alscher R.G., Wellburn A.R. (Eds.), Plant responses to the gaseous environment, Chapman & Hall, 1994, pp. 255-278.
  10. Dizengremel P., Sasek T.W., Brown K.J., Richardson C.J., Ozone-induced changes in primary carbon metabolism enzymes of loblolly pine needles, J. Plant Physiol. 144 (1994) 300-306.
  11. Ellsworth D.S., Reich P.B., Leaf mass per area, nitrogen content and photosynthetic carbon gain in Acer saccharum seedlings in contrasting forest light environments, Funct. Ecol. 6 (1992) 423-435.
  12. Fontaine V., Pelloux J., Podor M., Afif D., Gérant D., Grieu P., Dizengremel P., Carbon fixation in Pinus halepensis submitted to ozone. Opposite response of ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase, Physiol. Plant. 105 (1999) 187-192 [CrossRef].
  13. Fortin M., Mauffette Y., The suitability of leaves from different canopy layers for a generalist herbivore (Lepidoptera: Lasiocampidae) foraging on sugar maple, Can. J. For. Res. 32 (2002) 379-389 [CrossRef].
  14. Foyer C.H., Halliwell B., The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism, Planta 133 (1976) 21-25 [CrossRef].
  15. Fuentes J.D., Dann T.F., Ground-level ozone in eastern Canada: seasonal variations, trends, and occurences of high concentrations, J. Air Waste Manage, Assoc. 44 (1994) 1019-1026.
  16. Gaucher C., Costanzo N., Afif D., Mauffette Y., Chevrier N., Dizengremel P., The impact of elevated ozone and carbon dioxide on young Acer saccharum (Marsh.) seedlings, Physiol. Plant. 117 (2003) 392-402 [CrossRef] [PubMed].
  17. Gaucher C., Gougeon S., Mauffette Y., Messier C., Seasonal variation in biomass and carbohydrate partitioning of understory sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis) seedlings, Tree Physiol. 25 (2005) 93-100 [PubMed].
  18. Gregory R.A., Annual cycle of shoot development in sugar maple, Can. J. For. Res. 10 (1980) 316-326.
  19. Heagle S.A., Philbeck R.B., Rogers H.H., Letchworth M.B., Dispensing and monitoring ozone in open-top field chambers for plant effect studies, Phytopathology 69 (1989) 15-20.
  20. Hogsett W.E., Weber J.E., Tingey D., Herstrom A., Lee E.H., Laurence J.A., An approach for caracterizing tropospheric ozone risk to forests, Environ. Manage. 21 (1997) 105-120 [CrossRef] [PubMed].
  21. Isaksen I.S.A., Hov Ø., Calculation of trends in the tropospheric concentration of O3, OH, CO, CH4 and NO$_{\rm x}$, Tellus 39B (1987) 271-285.
  22. Jaworski E.G., Nitrate reductase assay in intact plant tissue, Biochem. Biophys. Res. Co. 43 (1971) 1274-1279.
  23. Jones C.G., Coleman J.S., Plant stress and insect herbivory: toward an integrated perspective, in: Mooney H.A., Winner W.E., Pell E.J. (Eds.), Response of plants to multiple stresses, Academic Press, 1991, pp. 249-274.
  24. Kickert R.N., Krupa S.V., Forest responses to tropospheric ozone and global climate change: an analysis, Environ. Pollut. 68 (1990) 26-65.
  25. Kramer P.J., Kozlowski T.T., Physiology of woody plants, Academic Press, Orlando, FL, 1979, 811 p.
  26. Kress L.W., Skelly J.M., Response of several eastern forest tree species to chronic doses of ozone and nitrogen dioxide, Plant Dis. 66 (1982) 1149-1152.
  27. Lam H.M., Coschigano K.T., Oliveira I.C., Melo-Oliveira R., Coruzzi G.M., The molecular-genetics of nitrogen assimilation into amino acids in higher plants, Ann. Rev. Plant Physiol. 47 (1996) 569-93.
  28. Larson R.A., Plant defences against oxidative stress, Arch. Insect Biochem. 29 (1995) 175-186 [CrossRef].
  29. Latzko E., Kelly G.J., The many-faceted function of phosphoenolpyruvate carboxylase in C3 plants, Physiol. Veg. 21 (1983) 805-815.
  30. Laurence J.A., Kohut R.J., Amundson R.G., Weinstein D.A., Mac Lean D.C., Response of sugar maple to multiple year exposures to ozone and simulated acidic precipitation, Environ. Pollut. 92 (1996) 119-126 [CrossRef] [PubMed].
  31. Lilley R.C., Walker D.A., An improved spectrophotometric assay for ribulose bisphosphate carboxylase, Biochem. Biophys. Acta 358 (1974) 226-229.
  32. Luethy-Krause B., Pfenninger I., Landolt W., Effects of ozone on organic acids in needles of Norway spruce and Scots pine, Trees 4l (1990) 198-204.
  33. Lütz C., Anegg S., Gérant D., Alaoui-Sossé B., Gérard J., Dizengremel P., Beech trees exposed to high CO2 and to simulated summer ozone levels: effects on photosynthesis, chloroplast components and leaf enzyme activity, Physiol. Plant. 109 (2000) 252-259 [CrossRef].
  34. Manderscheid R., Jâger H.-J., Kress L.W., Effects of ozone on foliar nitrogen metabolism of Pinus taeda L. and implications for carbohydrate metabolism, New Phytol. 121 (1992) 623-633.
  35. Noble R., Jensen K.F., Ruff B.S., Loats K., Response of Acer saccharum to elevated carbon dioxide and ozone, Ohio J. Sci. 92 (1992) 60-62.
  36. Nakano Y., Asada K., Spinach chloroplasts scavenge hydrogen peroxide on illumination, Plant Cell Physiol. 21 (1980) 1295-1307.
  37. Noctor G., Foyer C.H., Ascorbate and glutathione: keeping active oxygen under control, Ann. Rev. Plant Physiol, Plant Mol. Biol. 49 (1998) 249-279 [CrossRef].
  38. Pell E.J., Eckardt N., Glick R.E., Biochemical and molecular basis for impairment of photosynthetic potential, Photosynth. Res. 39 (1994) 453-462 [CrossRef].
  39. Pitel J.A., Cheliak W.M., Effectiveness of protective agents for increasing the activity of five enzymes from vegetative tissues of white spruce, Can. J. Bot. 64 (1985) 39-43.
  40. Prather M., Gauss M., Berntsen T., Isaksen I., Sundet J., Bey I., Brasseur G., Dentener F., Derwent R., Stevenson D., Grenfell L., Hauglustaine D., Horowitz L., Jacob D., Mickley L., Lawrence M., von Kuhlmann R., Muller J.-F., Pitari G., Rogers H., Johnson M., Pyle J., Law K., van Weele M., Wild O., Fresh air in the 21st century? Geophys. Res. Lett. 30 (2003).
  41. Rebbeck J., Chronic ozone effects on three northeastern hardwood species: growth and biomass, Can. J. For. Res. 26 (1996) 1788-1798.
  42. Rebbeck J., Loats K.V., Ozone effects on seedlings sugar maple (Acer saccharum) and yellow-poplar (Liriodendron tulipifera) gas exchange, Can. J. For. Res. 27 (1997) 1595-1605 [CrossRef].
  43. Renaud J.P., Allard G., Mauffette Y., Effects of ozone on yield, growth, and root starch concentrations of two alfafa (Medicago sativa L.) cultivars, Environ. Pollut. 95 (1997) 273-281 [CrossRef] [PubMed].
  44. Robichaux A., Analyse des niveaux d'ozone troposphérique en milieu forestier, réseau REMPAFAQ (1989-1991). Direction de l'environnement forestier, service du suivi environnemental, Québec, 1994, p. 84.
  45. Sehmer L., Fontaine V., Antoni F., Dizengremel P., Effects of ozone and elevated atmospheric carbon dioxide on carbohydrate metabolism of spruce needles, Catabolic and detoxification pathways, Physiol. Plant. 102 (1998) 605-611 [CrossRef].
  46. Smith I.K., Vierheller T.L., Thorne C.A., Assay of glutathion reductase in crude tissue homogenates using 5,5'-dithiobis (2-nitrobenzoic acid), Ann. Biochem. 175 (1988) 408-413 [CrossRef].
  47. Sokal R., Rohlf J., Biometry: The Principles and Practice of Statistics in Biological Research, Freeman and Co., New-York, 1995, pp. 451-554.
  48. Steingraeber D.A., Heterophylly and neoformation of leaves in sugar maple (Acer saccharum), Am. J. Bot. 69 (1982) 1277-1282.
  49. Swain T., Hillis W.E., The phenolic constituents of Prunus domestica. The quantitative analyses of phenolic constituents, J. Sci. Food Agric. 10 (1959) 63-68.
  50. Tietz S., Wild A., Investigations on the phosphoenolpyruvate carboxylase activity of spruce needles relative to the occurrence of novel forest decline, J. Plant Physiol. 137 (1991) 327-331.
  51. Tjoelker M.G., Volin J.C., Oleksyn J., Reich P.B., Interaction of ozone pollution and light effects on photoynthesis in a forest canopy experiment, Plant Cell Environ. 18 (1995) 895-905.
  52. Topa M.A., Vanderklein D.W., Corbin A., Effects of elevated ozone and low light on diurnal and seasonal carbon gain in sugar maple, Plant Cell Environ. 24 (2001) 663-677 [CrossRef].
  53. Truax B., Gagnon D., Chevrier N., Nitrate assimilation of raspberry and pin cherry in a recent clearcut, Can. J. Bot. 72 (1994) 1343-1348.
  54. Tucker G.F., Lassoie J.P., Fahey T.J., Crown architecture of stand-grown sugar maple (Acer saccharum Marsh.) in the Adirondack Mountains, Tree Physiol. 13 (1993) 297-310 [PubMed].
  55. Turner S., Problématique de l'ozone troposphérique au Québec et dans la région de Montréal, Environnement Canada (1995).
  56. Van Oosten J.J., Afif D., Dizengremel P., Long-term effects of a CO2 enriched atmosphere on enzymes of the primary carbon metabolism of spruce trees, Plant Physiol. Biochem. 30 (1992) 541-547.
  57. Von Althen F.W., Hardwood plantation establishment on former farmland in southern Ontario, Pap. Pres. at the 21st Semaine des sciences for., Univ. Laval, Québec, 1990, p. 18.
  58. Wieser G., Hecke K., Tausz M., Häberle K-H., Grams T.E.E., Matyssek R., The influence of microclimate and tree age on the defense capacity of European beech (Fagus sylvatica L.) against oxidative stress, Ann. For. Sci. 60 (2003) 131-135 [EDP Sciences] [CrossRef].
  59. Yawney H.W., Planting sugar maple, in: Sugar maple research: sap production, processing and marketing of maple syrup, USDA, For. Serv., Northeastern For. Exp. Stn., Broomall (PA), Gen. Tech. Rep. NE-72 (1982) 53-60.