Free access
Issue
Ann. For. Sci.
Volume 64, Number 4, June-July 2007
Page(s) 395 - 404
DOI http://dx.doi.org/10.1051/forest:2007016
Published online 24 May 2007
References of  Ann. For. Sci. 64 (2007) 395-404
  1. Cannell M.G.R., Physiological basis of wood production: a review, Scand. J. For. Res. 4 (1989) 459-490.
  2. Casella E., Ceulemans R., Spatial distribution of leaf morphological and physiological characteristics in relation to local radiation regime within the canopies of 3-year-old Populus clones in coppice culture, Tree Physiol. 22 (2002) 1277-1288 [PubMed].
  3. Casella E., Sinoquet H., A method for describing the canopy architecture of coppice poplar with allometric relationships, Tree Physiol. 23 (2003) 1153-1169 [PubMed].
  4. Ceulemans R., Stettler R.F., Hinckley T.M., Isebrands J.G., Heilman P.E., Crown architecture of Populus clones as determined by branch orientation and branch characteristics, Tree Physiol. 7 (1990) 157-167 [PubMed].
  5. Ceulemans R., Impens I., Mau F., Van Hecke P., Chen S.G., Biomass for energy, industry and environment, in: Grassi G., Collina A., Zibetta H. (Eds.), Dry mass production and solar radiation conversion efficiency of poplar clones, Elsevier Science Publishing, New York, 1992, pp. 157-163.
  6. Ceulemans R., Scarascia-Mugnozza G., Wiard B.M., Braatne J.H., Hinckley T.M., Stettler R.F., Isebrands J.G., Heilman P.E., Production physiology and morphology of Populus species and their hybrids grown under short rotation. I. Clonal comparisons of 4-year growth and phenology, Can. J. For. Res. 22 (1992) 1937-1948.
  7. Chen J.M., Rich P.M., Gower S.T., Norman J.M., Plummer S., Leaf area index of boreal forests: theory, techniques, and measurements, J. Geophys. Res. 102 (1997) 29429-29443 [CrossRef].
  8. Chen S.G., Modelling architecture and the light regime of poplar canopies using fractal approach, Ph.D. thesis, University of Antwerp, 1992.
  9. DeBell D.S., Clendenen G.W., Harrington C.A., Zasada C., Tree growth and stand development in short-rotation Populus plantings: 7-year results for two clones at three spacings, Biomass Bioenergy 11 (1996) 253-269 [CrossRef].
  10. Gálves D., Pearcy R.W., Petiole twisting in the crowns of Psychotria limonensis: implications for light interception and daily carbon gain, Oecologia 135 (2003) 22-29 [PubMed].
  11. Godin C., Caraglio Y., A multiscale model of plant topological structures, J. Theor. Biol. 191 (1998) 1-46 [CrossRef] [PubMed].
  12. Grassi G., Gosse G., Dos Santos G., Biomass for Energy and Industry, Vol. 1: Policy, environment, production and harvesting, Elsevier Applied Science, London, 1990.
  13. Heilman P.E., Hinckley T.M., Roberts D.A., Ceulemans R., Biology of Populus and its implications for management and conservation, in: Stettler R.F., Bradshaw H.D., Heilman P.E., Hinckley T.M. (Eds.), Production physiology, NRC Research Press, Ottawa, 1996, pp. 459-489.
  14. Laureysens I., Bogaert J., Blust R., Ceulemans R., Biomass production of 17 poplar clones in a short-rotation coppice culture on a waste disposal site and its relation to soil characteristics, For. Ecol. Manage. 187 (2004) 295-309 [CrossRef].
  15. Milne R., Sattin M., Deans J.D., Jarvis P.G., Cannell M.G.R., The biomass production of three poplar clones in relation to intercepted solar radiation, For. Ecol. Manage. 55 (1992) 1-14 [CrossRef].
  16. Niinemets U., Adjustment of foliage structure and function to a canopy light gradient in two co-existing deciduous trees. Variability in leaf inclination angles in relation to petiole morphology, Trees 12 (1998) 446-451 [CrossRef].
  17. Niinemets U., Al Afas N., Cescatti A., Pellis A., Ceulemans R., Petiole length and biomass investment in support modify light-interception efficiency in dense poplar plantations, Tree Physiol. 24 (2004) 141-154 [PubMed].
  18. Niklas K.J., The role of phyllotactic pattern as a "developmental constraint" on the interception of light by leaf surfaces, Evolution 42 (1988) 1-16 [CrossRef].
  19. Niklas K.J., Petiole mechanics, light interception by lamina, and economy in design, Oecologia 90 (1992) 518-526 [CrossRef].
  20. Pearcy R.W., Yang W., The functional morphology of light capture and carbon gain in the Redwood forest understory plant, Adenocaulon bicolor Hook, Funct. Ecol. 12 (1998) 543-552.
  21. Pearcy R.W., Muraoka H., Valladares F., Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model, New Phytol. 166 (2005) 791-800 [PubMed].
  22. Ross J., The radiation regime and architecture of plant stands, W. Junk Publishers, The Hague, Boston, London, 1981.
  23. Sinoquet H., Le Roux X., Short-term interactions between tree foliage and the aerial environment: an overview of modelling approaches available for tree structure-function models, Ann. For. Sci. 57 (2000) 477-496 [EDP Sciences] [CrossRef].
  24. Sinoquet H., Sonohat G., Phattaralerphong J., Godin C., Foliage randomness and light interception in 3D digitised trees: an analysis from multiscale discretisation of canopy, Plant Cell Environ. 28 (2005) 1158-1170.
  25. Takenaka A., Effects of leaf blade narrowness and petiole length on the light capture efficiency of shoot, Ecol. Res. 9 (1994) 109-114 [CrossRef].
  26. Takenaka A., Takahashi K., Kohyama T., Optimal leaf display and biomass partitioning for efficient light capture in an understory palm, Licuala arbuscula, Funct. Ecol. 15 (2001) 660-668.
  27. Valladares F., Brites D., Leaf phyllotaxis: Does it really affect light capture? Plant Ecol. 174 (2004) 11-17 [CrossRef].
  28. Zavitkovski J., Structure and seasonal distribution of litterfall in young plantations of Populus `Tristis#1', Plant Soil 60 (1981) 409-422 [CrossRef].