Free access
Issue
Ann. For. Sci.
Volume 65, Number 4, June 2008
Article Number 406
Number of page(s) 12
DOI http://dx.doi.org/10.1051/forest:2008018
Published online 30 May 2008
References of  Ann. For. Sci. 65 (2008) 406
  1. Atwood R.A., White T.L., and Huber D.A., 2002. Genetic parameters and gains for growth and wood properties in Florida source loblolly pine in the southeastern United States. Can. J. For. Res. 32: 1025-1038 [CrossRef].
  2. Belonger P.J., 1998. Variation in selected juvenile wood properties in four southern provenances of loblolly pine. M.S. thesis, North Carolina State University, Raleigh, NC, 174 p.
  3. Belonger P.J., McKeand S.E., and Jett J.B., 1996. Genetic and environmental effects on biomass production and wood density in loblolly pine. In: Dieters M.J., Matheson A.C., Nikles D.G., Harwood C.E., Walker S.M. (Eds.), Tree improvement for sustainable tropical forestry QFRI IUFRO Conference, Queensland, Australia, 27 October 1996.
  4. Byram T.D. and Lowe W.J., 1988. Specific gravity variation in a loblolly pine seed source study in the western Gulf region. For. Sci. 34: 798-803.
  5. Cown D.J., 1978. Comparison of the Pilodyn and torsiometer methods for the rapid assessment of wood density in living trees. N. Z. J. For. Sci. 8: 384-391.
  6. Cui X., Kerr M.K., and Churchill G.A., 2003. Transformations for cDNA microarray data. Stat. Appl. Genet. Mol. Biol. 2: 1-10 [MathSciNet].
  7. Cumbie W.P., 2002. Variation of wood density traits in rooted cuttings and seedlings of loblolly pine. MS Thesis. North Carolina State University, Raleigh, NC, 97 p.
  8. Finlay K.W. and Wilkinson G.N., 1963. The analysis of adaptation in a plant-breeding programme. Aust. J. Agric. Resour. Econ. 14: 742-754 [CrossRef].
  9. Gilmour A.R., Gogel B.J., Cullis B.R., Welham S.J., and Thomson R., 2002. ASREML User Guide, Release 1.0. VSN International Ltd, Hemel Hempstead, HP1, 1ES, UK. 267 p.
  10. Gough G. and Barnes R.D., 1984. A comparison of three methods of wood density assessment in a Pinus elliottii progeny tests. S. Afr. For. J. 128: 22-25.
  11. Gwaze D.P., 1997. Genetic parameter estimates for height and stem straightness in Pinus taeda Linnaeus and implications for breeding. Ph.D. thesis, University of Edinburgh, Edinburgh, Scotland, p. 284.
  12. Gwaze D.P., Bridgwater F.E., Byram T.D., and Lowe W.J., 2001. Genetic parameter estimates for growth and wood density in loblolly pine (Pinus taeda L.). For. Genet. 8: 47-55.
  13. Hodge G.R. and Purnell R.C., 1993. Genetic parameter estimates for wood density, transition age and radial growth in slah pine. Can. J. For. Res. 23: 1881-1891 [CrossRef].
  14. Huber W., von Heydebreck A., Sultmann H., Poustka A., and Vingron M., 2002. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl. 1): S96-S104.
  15. Isik F. and Li B., 2003. Rapid assessment of wood density of live trees using the Resistograph for selection in tree improvement programs. Can. J. For. Res. 33: 2426-2435 [CrossRef].
  16. Jayawickrama K.J.S., McKeand S.E., Jett J.B., and Wheeler E.A., 1997. Date of earlywood-latewood in provenances and families of loblolly pine, and its relationship to growth phenology and juvenile wood specific gravity. Can. J. For. Res. 27: 1245-1253 [CrossRef].
  17. Jett J.B., McKeand S.E., and Weir R.J., 1991. Stability of juvenile wood specific gravity of loblolly pine in diverse geographic areas. Can. J. For. Res. 21: 1080-1085 [CrossRef].
  18. Jin W., Riley R.M., Wolfinger R.D., White K.P., Gisele P.G., and Gibson G., 2001. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nature Genet. 29: 389-395 [CrossRef].
  19. Kerr M.K., Martin M., and Churchill G.A., 2000. Analysis of variance for gene expression microarray data. J. Comp. Biol. 7: 819-837 [CrossRef].
  20. Kerr M.K. and Churchill G.A., 2001. Statistical design and the analysis of gene expression microarrays (invited review). Genet. Res. 77: 123-128 [PubMed] [CrossRef].
  21. Li B., McKeand S.E. and Weir R.J., 1999. Tree improvement and sustainable forestry - impact of two cycles of loblolly pine breeding in the US. For. Genet. 6: 229-234.
  22. Littell R.C., Milliken G.A., Stroup W.W., and Wolfinger R.D., 1996. SAS System for Mixed Models. Cary, N.C.: SAS Institute Inc., 633 p.
  23. Lynch M. and Walsh B., 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Inc., Sunderland, MA, 980 p.
  24. McKeand S.E., Li B., Hatcher A.V., and Weir R.J., 1990. Stability of parameter estimates for stem volume for loblolly pine families growing in different regions in the southeastern United States. For. Sci. 36:10-17.
  25. McKeand S.E., Mullin T.J., Byram T., and White T. 2003. Deployment of genetically improved loblolly and slash pines in the South. J. For. 101(3): 32-37.
  26. Megraw R.A., 1985. Wood quality factors in loblolly pine. The influence of tree age, position in tree, and cultural practice on wood specific gravity, fiber length and fibril angle. Tappi Press, 88 p.
  27. Pliura P., Zhanga S.Y., Bousquet J., and MacKay J. 2006. Age trends in genotypic variation of wood density and its intra-ring components in young poplar hybrid crosses. Ann. For. Sci. 63: 673-685.
  28. SAS Institute Inc., 1996. SAS/STAT Software: changes and enhancements (through release 6.11). SAS Institute Inc., Cary, N.C.
  29. Sprague J.R., Talbert J.T., Jett J.B., and Bryant R.L., 1983. Utility of the Pilodyn in selection for mature wood specific gravity in loblolly pine. For. Sci. 29: 696-701.
  30. Talbert J.T., Jett J.B., and Bryant R.L., 1983. Inheritance of wood specific gravity in an unimproved loblolly pine population: 20 years of results. Silvae Genet. 32: 33-37.
  31. Tauer C.G. and Loo-Dinkins J.A., 1990. Seed source variation in specific gravity of loblolly pine grown in a common-garden experiment in Arkansas. For. Sci. 36: 1133-1145.
  32. Wolfinger R.D., Gibson G., Wolfinger E.D., Bennett L., Hamadeh H., Bushel P., Afshari C., and Aules R.S., 2001. Assessing gene significance from cDNA Microarray expression data via mixed models. J. Comp. Biol 8: 625-637 [CrossRef].
  33. Wu H.X., Powell M.B., Yang J.L., Ivkovic M., and McRae T.A. 2007. Efficiency of early selection for rotation-aged wood quality traits in radiata pine. Ann. For. Sci. 64: 1-9.
  34. Xiang B. and Li B., 2001. A new mixed analytical method for genetic analysis of diallel data. Can. J. For. Res. 31: 2252-2259 [CrossRef].
  35. Xiang B., Li B., and Isik F., 2003. Time trend of genetic parameter estimates in growth traits of Pinus taeda L. Silvae Genet. 52: 114-121.
  36. Zobel B.J. and van Buijtenen J.P., 1989. Wood variation, its causes and control. Springer Verlag, Berlin, 363 p.
  37. Zobel B.J. and Sprague J.R., 1998. Juvenile wood in forest trees. Springer Verlag, Berlin 300 p.
  38. Zobel B.J. and Talbert J.T., 1984. Applied forest tree improvement. John Wiley & Sons, New York. 505 pp.