Free access
Issue
Ann. For. Sci.
Volume 65, Number 7, October-November 2008
Article Number 706
Number of page(s) 10
DOI http://dx.doi.org/10.1051/forest:2008049
Published online 20 September 2008
References of  Ann. For. Sci. 65 (2008) 706
  1. Adams W.T. and Birkes D.S., 1991. Estimating mating patterns in forest tree populations. In: Fineschi S., Malvolti M.E., Cannata F., and Hattemer H.H. (Eds.), Biochemical markers in the population genetics of forest trees, SPB Academic Publishing, The Hague, pp. 157–172.
  2. Adams W.T. and Burczyk J., 2000. Magnitude and implications of gene flow in gene conservation reserves. In: Young A., Boshier D., and Boyle T. (Eds.), Forest conservation: principles and practice, CSIRO Publisher, Collingwood, pp. 215–224.
  3. Alía R., Gil L. and Pardos J., 1995. Performance of 43 Pinus pinaster Ait. provenances on 5 locations in central Spain. Silvae Genet. 44: 75–81.
  4. Botstein D., White R.L., Skolnick K., and Davis R.W., 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am. J. Hum. Genet. 32: 314–331 [PubMed].
  5. Buiteveld J., Bakker E.G., Bovenschen J., and de Vries S.M.G., 2001. Paternity analysis in a seed orchard of Quercus robur L. and estimation of the amount of background pollination using microsatellite markers. For. Genet. 8: 331–337.
  6. Burczyk J., Adams W., and Shimizu J., 1996. Mating patterns and pollen dispersal in a natural knobcone pine (Pinus attenuata Lemmon.) stand. Heredity 77: 251–260.
  7. Burczyk J., Adams W.T., Moran G.F., and Griffin A.R., 2002. Complex patterns of mating revealed in a Eucalyptus regnans seed orchard using allozyme markers and the neighbourhood model. Mol. Ecol. 11: 2379–2391 [PubMed] [CrossRef].
  8. Burczyk J., DiFazio S.P., and Adams W.T., 2004a. Gene flow in forest trees: How far do genes really travel? For. Genet. 11: 1–14.
  9. Burczyk J., Lewandowski A., and Chalupka W., 2004b. Local pollen dispersal and distant gene flow in Norway spruce (Picea abies [L.] Karst.). For. Ecol. Manag. 197: 39–48 [CrossRef].
  10. Chaix G., Gerber S., Razafimaharo V., Vigneron P., Verhaegen D., and Hamon S., 2003. Gene flow estimation with microsatellites in a Malagasy seed orchard of Eucalyptus grandis. Theor. Appl. Genet. 107: 705–712 [PubMed] [CrossRef].
  11. Derory J., Mariette S., González-Martínez S.C., Chagné D., Madur D., Gerber S., Ribeiro M.M., and Plomion C., 2002. What can nuclear microsatellites tell us about maritime pine genetic resources conservation and provenances certification strategies? Ann. For. Sci. 59: 699–708.
  12. Dow B.D. and Ashley M.V., 1998. High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. J. Hered. 89: 62–70 [CrossRef].
  13. Doyle J.J. and Doyle J.L., 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.
  14. Durel C.E., Bertin P., and Kremer A., 1996. Relationship between inbreeding depression and inbreeding coefficient in maritime pine (Pinus pinaster). Theor. Appl. Genet. 92: 347–356 [CrossRef].
  15. El-Kassaby Y.A., 1995. Evaluation of the tree-improvement delivery system: factors affecting genetic potential. Tree Physiol. 15: 545–550 [PubMed].
  16. Gerber S., Chabrier P., and Kremer A., 2003. FaMoz: a software for parentage analysis using dominant, codominant and uniparentally inherited markers. Mol. Ecol. Notes 3: 479–481 [CrossRef].
  17. Gerber S., Mariette S., Streiff R., Bodénès C., and Kremer A., 2000. Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. Mol. Ecol. 9: 1037–1048 [PubMed] [CrossRef].
  18. González-Martínez S.C., Agúndez D., Alía R., Salvador L., and Gil L., 2001. Geographical variation of gene diversity of Pinus pinaster Ait. in the Iberian Peninsula. In: Müller-Starck G. and Schubert R. (Eds.), Genetic Response of Forest Systems to Changing Environmental Conditions. Kluwer Academic Press, Dordrecht, pp. 161–171.
  19. González-Martínez S.C., Gerber S., Cervera M.T., Martínez-Zapater J.M., Gil L., and Alía R., 2002. Seed gene flow and fine-scale structure in a Mediterranean pine (Pinus pinaster Ait.) using nuclear microsatellite markers. Theor. Appl. Genet. 104: 1290–1297 [PubMed] [CrossRef].
  20. González-Martínez S.C., Gerber S., Cervera M.T., Martínez-Zapater J.M., Gil L., and Alía R., 2003. Selfing and sibship structure in a two-cohort stand of maritime pine (Pinus pinaster Ait.) using nuclear SSR markers. Ann. For. Sci. 60: 115–121 [EDP Sciences] [CrossRef].
  21. Harju A.M. and Nikkanen T., 1996. Reproductive success of orchard and nonorchard pollens during different stages of pollen shedding in a Scots pine seed orchard. Can. J. For. Res. 26: 1096–1102 [CrossRef].
  22. Kang K.-S., 2001. Genetic gain and gene diversity of seed orchard crops. The Swedish University of Agricultural Sciences, Umeå.
  23. Kang K.S., Harju A.M., Lindgren D., Nikkanen T., Almqvist C., and Suh G.U., 2001a. Variation in effective number of clones in seed orchards. New For. 21, 17.
  24. Kang K.S., Lindgren D., and Mullin T.J., 2001b. Prediction of genetic gain and gene diversity in seed orchard crops under alternative management strategies. Theor. Appl. Genet. 103: 1099–1107 [CrossRef].
  25. Lucas A.I., Robledo-Arnuncio J.J., Hidalgo E., and Gonzalez-Martinez S.C., 2008. Mating system and pollen gene flow in Mediterranean maritime pine. Heredity 100: 390–399 [PubMed] [CrossRef].
  26. Mariette S., Chagne D., Decroocq S., Vendramin G.G., Lalanne C., Madur D., and Plomion C., 2001. Microsatellite markers for Pinus pinaster Ait. Ann. For. Sci. 58: 203–206 [EDP Sciences] [CrossRef].
  27. Marshall T.C., Slate J., Kruuk L., and Pemberton J.M., 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7: 639–655 [PubMed] [CrossRef].
  28. Meagher T.R. and Thompson E., 1986. The relationship between single parent and parent pair genetic likelihoods in genealogy reconstruction. Theor. Popul. Biol. 29: 87–106 [CrossRef].
  29. Moriguchi Y., Taira H., Tani N., and Tsumura Y., 2004. Variation of paternal contribution in a seed orchard of Cryptomeria japonica determined using microsatellite markers. Can. J. For. Res. 34: 1683–1690 [CrossRef].
  30. Moriguchi Y., Tsuchiya S., Iwata H., Itoo S., Tani N., Taira H., and Tsumura Y., 2007. Factors influencing male reproductive success in a Cryptomeria japonica seed orchard revealed by microsatellite marker analysis. Silvae Genet. 56: 207–214.
  31. Nei M., 1987. Molecular evolutionary genetics. Columbia University Press, New York, 512 p.
  32. Parducci L., Szmidt A.E., Ribeiro M.M., and Drouzas A.D., 2001. Taxonomic position and origin of the endemic sicilian fir Abies nebrodensis (Lojac.) Mattei based on allozyme analysis. For. Genet. 8: 119–127.
  33. Perry D.H., 1940. Pinus pinaster in Western Australia. Aust. For. 5: 85–87.
  34. Plomion C., LeProvost G., Pot D., Vendramin G., Gerber S., Decroocq S., Brach J., Raffin A., and Pastuszka P., 2001. Pollen contamination in a maritime pine polycross seed orchard and certification of improved seeds using chloroplast microsatellites. Can. J. For. Res. 31: 1816–1825 [CrossRef].
  35. Prat D. and Burczyk J., 1998. Genetic variation and mating system in a native provenance and the derived seed orchard of douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). For. Genet. 5: 201–209.
  36. Ribeiro M.M., Plomion C., Petit R., Vendramin G.G., and Szmidt A.E., 2001. Variation of chloroplast simple-sequence repeats in Portuguese maritime pine (Pinus pinaster Ait.). Theor. Appl. Genet. 102: 97–103 [CrossRef].
  37. Ritland K., 2002. Extensions of models for the estimation of mating systems using n independent loci. Heredity 88: 221–228 [PubMed] [CrossRef].
  38. Salvador L., Alía R., Agúndez D., and Gil L., 2000. Genetic variation and migration pathways of maritime pine (Pinus pinaster Ait.) in the Iberian Peninsula. Theor. Appl. Genet. 100: 89–95 [CrossRef].
  39. Slavov G.T., Howe G.T., and Adams W.T., 2005a. Pollen contamination and mating patterns in a Douglas-fir seed orchard as measured by simple sequence repeat markers. Can. J. For. Res. 35: 1592–1603 [CrossRef].
  40. Slavov G.T., Howe G.T., Gyaourova A.V., Birkes D.S. and Adams W.T., 2005b. Estimating pollen flow using SSR markers and paternity exclusion: accounting for mistyping. Mol. Ecol. 14: 3109–3121 [PubMed] [CrossRef].
  41. Sokal R.R. and Rohlf F.J., 1981. Biometry. W.H. Freeman and Co., San Francisco, 859 p.
  42. Spielman D., Brook B.W., Briscoe D.A., and Frankham R., 2004. Does inbreeding and loss of genetic diversity decrease disease resistance? Conserv. Genet. 5: 439–448.
  43. Streiff R., Ducousso A., Lexer C., Steinkellner H., Gloessl J., and Kremer A., 1999. Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt.) Liebl. Mol. Ecol. 8: 831–841 [CrossRef].
  44. Szmidt A.E., Wang X.-R., and Lu M.-Z., 1996. Empirical assessment of allozyme and RAPD variation in Pinus sylvestris L. using haploid tissue analysis. Heredity 76: 412–420 [CrossRef].
  45. Varela C., 1989. Comportamento reprodutivo de Pinus pinaster Ait. num pomar clonal de sementes. Universidade Técnica de Lisboa, Lisbon, 107 p.
  46. Weir B.S. and Cockerham C.C., 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370 [CrossRef].
  47. Wheeler N.C. and Jech K.S., 1992. The use of electrophorectic markers in seed orchard research. New For. 92: 311–328.
  48. Williams C.G. and Savolainen O., 1996. Inbreeding depression in conifers: Implications for breeding strategy. For. Sci. 42: 102–117.