Free access
Ann. For. Sci.
Volume 66, Number 4, June 2009
Article Number 413
Number of page(s) 11
Published online 06 May 2009
References of  Ann. For. Sci. 66 (2009) 413
  1. Adams W.T., Aitken S.N., Joyce D.G., Howe G.T., and Vargas-Hernández J., 2001. Evaluating efficacy of early testing for stem growth in coastal Douglas-fir. Silvae Genet. 50: 167–175.
  2. Aletà N., 1994. La multiplicación del nogal, Postgraduate course on Production and Economy of Nuts. Course notes, FAO-CIHEAM, Reus.
  3. Aletà N., Ninot A., and Voltas J., 2004. Retrospective evaluation of parental selection in nursery tests of Juglans regia L. using a mixed model analysis. Silvae Genet. 53: 26–33.
  4. Becquey J., 1997. Les noyers à bois, Institut pour le Développement Forestier, Paris, 144 p.
  5. Boltz B.A., Bongarten B.C., and Teskey R.O., 1986. Seasonal patterns of net photosynthesis of loblolly-pine from diverse origins. Can. J. For. Res. 16: 1063–1068 [CrossRef].
  6. Bonhomme L., Barbaroux C., Monclus R., Morabito D., Berthelot A., Villar M., Dreyer E., and Brignolas F., 2008. Genetic variation in productivity, leaf traits and carbon isotope discrimination in hybrid poplars cultivated on contrasting sites. Ann. For. Sci. 65: 503 [EDP Sciences] [CrossRef].
  7. Carrión J.S., 2002. Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe. Quat. Sci. Rev. 21: 2047–2066 [CrossRef].
  8. Casasoli M., Pot D., Plomion C., Monteverdi M.C., Barreneche T., Lauteri M., and Villani F., 2004. Identification of QTLs affecting adaptive traits in Castanea sativa Mill. Plant Cell Environ. 27: 1088–1101 [CrossRef].
  9. Casasoli M., Derory J., Morera-Dutrey C., Brendel O., Porth I., Guehl J.M., Villani F., and Kremer A., 2006. Comparison of quantitative trait loci for adaptive traits between oak and chestnut based on an expressed sequence tag consensus map. Genetics 172: 533–546 [PubMed] [CrossRef].
  10. Cochard H., Coll L., Le Roux X., and Ameglio T., 2002. Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut. Plant Physiol. 128: 282–290 [PubMed] [CrossRef].
  11. Cregg B.M. and Zhang J.W., 2001. Physiology and morphology of Pinus sylvestris seedlings from diverse sources under cyclic drought stress. For. Ecol. Manage. 154: 131–139 [CrossRef].
  12. Díaz R. and Fernández-López J., 2005. Genetic variation at early ages for several traits of interest for timber-production breeding of Juglans regia. Can. J. For. Res. 35: 235–243 [CrossRef].
  13. Fady B., Ducci F., Aletà N., Becquey J., Díaz-Vázquez R., Fernández-López J., Jay-Allemand C., Lefèvre F., Ninot A., Panetsos K., Paris P., Pisanelli A., and Rumpf H., 2003. Walnut demonstrates strong genetic variability for adaptative and wood quality traits in a network of juvenile tests across Europe. New Forests 25: 211–225 [CrossRef].
  14. Farquhar G.D. and Richards R.A. 1984. Isotopic composition of plant carbon correlates with WUE of wheat genotypes. Aust. J. Plant Physiol. 11: 539–552.
  15. Farquhar G.D., Ehleringer J.R., and Hubick K.T. 1989. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. 40: 503–537.
  16. Ferrio J.P. and Voltas J., 2005, Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit. Tellus 57B: 164–173.
  17. Figueiral I. and Bettencourt A.M.S., 2004. Middle/Late Bronze Age plant communities and their exploitation in the Cavado Basin (NW Portugal) as shown by charcoal analysis: the significance and co-occurrence of Quercus (deciduous) – Fabaceae. Veget. Hist. Archaeobot. 13: 219–232 [CrossRef].
  18. Fornari B., Cannata F., Spada M., and Malvotti M.E., 1999. Allozyme analysis of genetic diversity and differentiation in European and Asian walnut (Juglans regia L.) populations. For. Genet. 6: 115–127.
  19. García del Barrio J.M., de Miguel J., Alía R., and Iglesias S., 2001. Regiones de identificación y utilización del material forestal de reproducción, Ministerio de Medio Ambiente, Madrid, 293 p.
  20. Germain E., Prunet J.P., and Garcin A., 1999. Le noyer, CTIFL, Paris, 279 p.
  21. Gilmour A.R., Gogel B.J., Cullis B.R., Welham S.J., and Thompson R., 2002. ASReml User guide release 1.0, VSN International Ltd, Hemel Hempstead, UK, 267 p.
  22. Hallauer A.R. and Miranda J.B., 1988. Quantitative genetics in maize breeding, 2nd éd., Iowa State Univ. Press, Ames, Iowa, 468 p.
  23. Hansche P.E., Beres V., and Forde H.I., 1972. Estimates of quantitative genetic properties of walnut and their implications for cultivar improvement. J. Amer. Soc. Hort. Sci. 97: 279–285.
  24. Hargreaves G.H. and Samani Z.A., 1982. Estimating potential evapotranspiration. J. Irrig. Drain Eng. 108: 225–230.
  25. Hemery G.E., Savill P.S., and Thakur A., 2005. Height growth and flushing in common walnut (Juglans regia L.): 5-year results from provenance trials in Great Britain. Forestry 78: 121–133 [CrossRef].
  26. IPCC, 2007. IPCC WGI Fourth Assessment Report. Summary for Policymakers. Available on-line
  27. Johnsen K.H., Flanagan L.B., Huber D.A., and Major J.E., 1999. Genetic variation in growth, carbon isotope discrimination, and foliar N concentration in Picea mariana: analyses from a half-diallel mating design using field-grown trees. Can. J. For. Res. 29: 1727–1735 [CrossRef].
  28. Lauteri M., Scartazza A., Guido M.C., and Brugnoli E., 1997. Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments. Funct. Ecol. 11: 675–683 [CrossRef].
  29. Lauteri M., Pliura A., Monteverdi M.C., Brugnoli E., Villani F., and Eriksson G., 2004. Genetic variation in carbon isotope discrimination in six European populations of Castanea sativa Mill. originating from contrasting localities. J. Evol. Biol. 17: 1286–1296 [PubMed] [CrossRef].
  30. Le Roux X., Bariac T., Sinoquet H., Genty B., Piel C., Mariotti A., Girardin C., and Richard P., 2001. Spatial distribution of leaf water-use efficiency and carbon isotope discrimination within an isolated tree crown. Plant Cell Environ. 24: 1021–1032 [CrossRef].
  31. Li C.Y., Berninger F., Koskela J., and Sonninen E., 2000. Drought responses of Eucalyptus microtheca provenances depend on seasonality of rainfall in their place of origin. Aust. J. Plant Physiol. 27: 231–238.
  32. McGranahan G.H., Hansen J., and Shaw D.V., 1988. Interspecific and intraspecific variation in Californian black walnuts. J. Am. Soc. Hortic. Sci. 113: 760-765.
  33. Monclus R., Dreyer E., Delmotte F.M., Villar M., Delay D., Boudouresque E., Petit J.M., Marron N., Bréchet C., and Brignolas F., 2005. Productivity, leaf traits and carbon isotope discrimination in 29 Populus deltoides $\times $ P. nigra clones. New Phytol. 167: 53–62 [PubMed] [CrossRef].
  34. Ninyerola M., Pons X., and Roure J.M., 2005. Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica, Universidad Autónoma de Barcelona, Barcelona, 45 p.
  35. Pennington R.E., Tischler C.R., Johnson H.B., and Polley H.W., 1999. Genetic variation for carbon isotope composition in honey mesquite (Prosopis glandulosa). Tree Physiol. 19: 583–589 [PubMed].
  36. Piel C., Frak E., Le Roux X., and Genty B., 2002. Effect of local irradiance on CO2 transfer conductance of mesophyll in walnut. J. Exp. Bot. 53: 2423–2430 [PubMed] [CrossRef].
  37. Prasolova N.V., Xu Z.H., Farquhar G.D., Saffigna P.G., and Dieters M.J., 2000. Variation in branchlet delta C-13 in relation to branchlet nitrogen concentration and growth in 8-year-old hoop pine families (Araucaria cunninghamii) in subtropical Australia. Tree Physiol. 20: 1049–1055 [PubMed].
  38. Prasolova N.V., Xu Z.H., Farquhar G.D., Saffigna P.G., and Dieters M.J., 2001. Canopy carbon and oxygen isotope composition of 9-year-old hoop pine families in relation to seedling carbon isotope composition, growth, field growth performance, and canopy nitrogen concentration. Can. J. For. Res. 31: 673–681 [CrossRef].
  39. Raddad E.Y. and Luukkanen O., 2006. Adaptive genetic variation in water-use efficiency and gum yield in Acacia senegal provenances grown on clay soil in the Blue Nile region, Sudan. For. Ecol. Manage. 226: 219–229 [CrossRef].
  40. Rink G. and Kung F.H., 1995. Age trends in genetic control of Juglans nigra L. height growth. Technical Report 197, Northeastern Forest Experiment Station, USDA Forest Service, pp. 247–255.
  41. Rosati A., Metcalf S., Buchner R., Fulton A., and Lampinen B., 2006. Tree water status and gas exchange in walnut under drought, high temperature and vapour pressure deficit. J. Hortic. Sci. Biotechnol. 81: 415–420.
  42. Seibt U., Rajabi A., Griffiths H., and Berry J.A., 2008. Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia 155: 441–454 [PubMed] [CrossRef].
  43. Tognetti R., Michelozzi M., Lauteri M., Brugnoli E., and Giannini R., 2000. Geographic variation in growth, carbon isotope discrimination, and monoterpene composition in Pinus pinaster Ait. provenances. Can. J. For. Res. 30: 1682–1690 [CrossRef].
  44. Voltas J., Chambel M.R., Prada M.A., and Ferrio J.P., 2008. Climate-related variability in carbon and oxygen stable isotopes among populations of Aleppo pine grown in common-garden tests. Trees 22: 759–769 [CrossRef].
  45. Warren C.R., 2008. Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. J. Exp. Bot. 59: 1475–1487 [PubMed] [CrossRef].
  46. Warren C.R., McGrath J.F., and Adams M.A., 2001. Water availability and carbon isotope discrimination in conifers. Oecologia 127: 476–486 [CrossRef].
  47. Warren C.R. and Adams M.A., 2006. Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. Plant Cell Environ. 29: 192–201 [PubMed] [CrossRef].
  48. Zhang J.W. and Marshall J.D., 1995. Variation in carbon isotope discrimination and photosynthetic gas exchange among populations of Pseudotsuga menziesii and Pinus ponderosa in different environments. Funct. Ecol. 9: 402–412 [CrossRef].