Free access
Issue
Ann. For. Sci.
Volume 66, Number 5, July-August 2009
Article Number 505
Number of page(s) 8
DOI http://dx.doi.org/10.1051/forest/2009027
Published online 09 July 2009
References of  Ann. For. Sci. 66 (2009) 505
  1. Benecke U., Schulze E.D., Matyssek R., and Havranek W.M., 1981. Environmental control of C02 assimilation and leaf conductance in Larix decidua Mill. I. A comparison of contrasting natural environments. Oecologia 50: 54–61.
  2. Chabot B.F. and Hicks D.J., 1982. The ecology of leaf life spans. Annu. Rev. Ecol. Syst. 13: 229–259 [CrossRef].
  3. Cordell S., Goldstein G., Meinzer F.C., and Handley L.L., 1999. Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity and delta 13C along an altitudinal gradient. Funct. Ecol. 13: 811–818 [CrossRef].
  4. Cordell S., Goldstein G., Mueller-Dombois D., Webb D., and Vitousek P.M., 1998. Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia 113: 188–196 [CrossRef].
  5. Cornic G. and Louason G., 1980. The effects of O2 on net photosynthesis at low-temperature (5 degree-C). Plant Cell Environ. 3:149-157.
  6. Decker J.P., 1947. The effect of air supply on apparent photosynthesis. Plant Physiol. 22: 561–571 [PubMed] [CrossRef].
  7. Delzon S., Bosc A., Cantet L., and Loustau D., 2005. Variation of the photosynthetic capacity across a chronosequence of maritime pine correlates with needle phosphorus concentration. Ann. For. Sci. 62: 537–543 [EDP Sciences] [CrossRef].
  8. Farquhar G.D., von Caemmerer S., and Berry J.A., 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90 [CrossRef].
  9. Field C. and Mooney H.A., 1986. The photosynthesis-nitrogen relationships in wild plants. In: Givnish T.J. (Ed.), On the economy of plant form and function, Cambridge University Press, Cambridge, pp. 25–55.
  10. Friend A.D., Woodward F.I., and Switsur V.R., 1989. Field measurements of photosynthesis, stomatal conductance, leaf nitrogen and delta 13C along altitudinal gradients in Scotland. Funct Ecol. 3: 117–122 [CrossRef].
  11. Gale J., 1972. Availability of carbon dioxide for photosynthesis at high altitudes: theoretical considerations. Ecology 53: 494–497 [CrossRef].
  12. Gonzalez-Real M.M. and Baille A., 2000. Changes in leaf photosynthetic parameters with leaf position and nitrogen content within a rose plant canopy (Rosa hybrida). Plant Cell Environ. 23: 351–363 [CrossRef].
  13. Hovenden M.J. and Brodribb T., 2000. Altitude of origin influences stomatal conductance and therefore maximum assimilation rate in Southern Beech, Nothofagus cunninghamii. Aust. J. Plant Physiol. 27: 451–456.
  14. Jones H.G., 1983. Plants and microclimate. A quantitative approach to environmental plant physiology, Cambridge University Press, Cambridge, 428 p.
  15. Kao W. and Chang K., 2001. Altitudinal trends in photosynthetic rate and leaf characteristics of Miscanthus populations from central Taiwan. Aust. J. Bot. 49: 509–514 [CrossRef].
  16. Kikuzawa K., 1989. Ecology and evolution of phenological pattern, leaf longevity and leaf habit. Evol. Trends Plants 3: 105–110.
  17. Körner C., 2003. Alpine plant life: functional plant ecology of high mountain ecosystem. Springer-Verlag Berlin Heidelberg, Berlin, 337 p.
  18. Körner C., 2008. The use of "altitude" in ecological research. Trends Ecol. Evol. 22: 569–574 [CrossRef].
  19. Körner C., Bannister P., and Mark A.F., 1986. Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant lifeforms in New Zealand. Oecologia 69: 577–588 [CrossRef].
  20. Körner C. and Cochrane P.M., 1986. Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient. Oecologia 66: 443–455 [CrossRef].
  21. Körner C. and Diemer M., 1987. In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude. Funct. Ecol. 1: 179–194 [CrossRef].
  22. Körner C., Neumayer M., Pelaez Menendez-Riedl S., and Smeets-Scheel A., 1989. Functional morphology of mountain plants. Flora 182: 353–383.
  23. Kouwenberg L.L.R., Kürschner W.M., and McElwain J.C., 2007. Stomatal frequency change over altitudinal gradients: prospects for paleoaltimetry. Rev. Mineral. Geochem. 66: 215–241 [CrossRef].
  24. Kowalski A.S. and Serrano-Ortiz P., 2007. On the relationship between the eddy covariance, the turbulent flux, and surface exchange for a trace gas such as CO2. Bound.-Lay. Meteorol. 124: 129–141 [CrossRef].
  25. Lambers H., Chapin F.S., and Pons T.L., 1998. Plant physiological ecology. Springer-verlag, New York, 540 p.
  26. Larcher W., 1969. Physiological plant ecology, Springer-Verlag, 506 p.
  27. Marron N., Brignolas F., Delmotte F.M., and Dreyer E., 2008. Modulation of leaf physiology by age and in response to abiotic constraints in young cuttings of two Populus deltoides $\times$ P. nigra genotypes. Ann. For. Sci. 65: 404 [EDP Sciences] [CrossRef].
  28. Kumar N., Kumar S., Vats S.K., and Ahuja P.S., 2006. Effect of altitude on the primary products of photosynthesis and the associated enzymes in barley and wheat. Photosynth. Res. 88: 63–71 [PubMed] [CrossRef].
  29. Oleksyn J., Modrzynski J., Tjoelker M.G., Zytkowiak R., Reich P.B., and Karolewski P., 1998. Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Funct. Ecol. 12: 573–590 [CrossRef].
  30. Premoli A.C. and Brewer C.A., 2007. Environmental v. genetically driven variation in ecophysiological traits of Nothofagus pumilio from contrasting elevations. Austr. J. Bot. 55: 585–591 [CrossRef].
  31. Rada F., Azocar A., Gonzalez J., and Briceno B., 1998. Leaf gas exchange in Espeletia schultzii Wedd, a giant caulescent rosette species, along an altitudinal gradient in the Venezuelan Andes. Acta Oecol. 19: 73–79 [CrossRef].
  32. Ramonell K.M., Kuang A., Porterfield D.M., Crispi M.L., Xiao Y., McClure G., and Musgrave M.E., 2001. Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana. Plant Cell Environ. 24:419–428.
  33. Reich P.B., Walters M.B., and Ellsworth D.S., 1992. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 62: 365–392 [CrossRef].
  34. Rundel P.W., Gibson A.C., Midgley G.S., Wand S.J.E., Palma B., Kleier C., and Lambrinos J., 2003. Ecological and ecophysiological patterns in a pre-altiplano shrubland of the Andean Cordillera in northern Chile. Plant Ecol. 169: 179–193 [CrossRef].
  35. Slatyer R.O. and Morrow P.A., 1977. Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb. ex Spreng. I. Seasonal changes under field conditions in the Snowy mountains area of south-eastern Australia. Austr. J. Bot. 25: 1–20.
  36. Sun J.D., Edwards G.E., and Okita T.W., 1999. Feedback inhibition of photosynthesis in rice measured by O-2 dependent transients. Photosynth. Res. 59:187–200.
  37. Terashima I., Masuzawa T., Ohba H., and Yokoi Y., 1995. Is photosynthesis suppressed at higher elevations due to low CO2 pressure? Ecology 76: 2663–2668.
  38. Tranquillini W., 1964. The physiology of plants at high altitudes. Plant Physiol. 15: 345–362 [CrossRef].
  39. Vitasse Y., Delzon S., Dufrêne E., Pontailler J.Y., Louvet J.M., Kremer A., and Michalet R., in press. Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses? Agr. For. Meteorol. (in Press) DOI:10.1016/j.agrformet.2008.10.019.
  40. Weng J.H. and Hsu F.H., 2001. Gas exchange and epidermal characteristics of Miscanthus populations in Taiwan varying with habitats and nitrogen application. Photosynthetica 39: 35–41 [CrossRef].
  41. Woodward F.I. and Bazzaz F.A., 1988. The response of stomatal density to CO2 partial pressure. J. Exp. Bot. 39: 1771–1781 [CrossRef].
  42. Yin C., Duan B., Wang X., and Li C., 2004. Morphological and physiological responses of two contrasting Poplar species to drought stress and exogenous abscisic acid application. Plant Sci. 167: 1091–1097 [CrossRef].
  43. Zhang H., Wu C.X., Chamba Y., and Ling Y., 2007. Blood characteristics for high altitude adaptation in Tibetan chickens. Poultry Sci. 86: 1384–1389.
  44. Zhang S., Zhou Z., Hu H., Xu K., Yan N., and Li S., 2005. Photosynthetic performances of Quercus pannosa vary with altitude in the Hengduan mountains, southwest China. For. Ecol. Manage. 212: 291–301 [CrossRef].