Free access
Issue
Ann. For. Sci.
Volume 67, Number 2, March-April 2010
Article Number 213
Number of page(s) 8
DOI http://dx.doi.org/10.1051/forest/2009106
Published online 01 February 2010
  • Aerts R. and Chapin F.S. III., 2000. The mineral nutrition of wild plants revisited: a re-evolution of processes and patterns. Adv. Ecol. Res. 30: 1–67 [CrossRef]
  • Allen S.E., Grimshaw H.M., Parkinson J.A., Quarmby C., and Roberts J.D., 1986. Chemical analysis. In: Chapman SB (Ed.), Methods in Plant Ecology, Blackwell Science, Oxford, pp. 411–466.
  • Anonymous., 1999. SPSS 10.0 for Windows. SPSS Inc., New York.
  • Anonymous., 1999. Net Cad for Windows Version 2.0 90b56.
  • Boerner R.E.J., 1984. Foliar nutrient dynamics, growth and nutrient use efficiency of Hamamelis virginiana in three forest microsites. Can. J. Bot. 63: 1476–1481 [CrossRef]
  • Boerner R.E.J. and Koslowsky S.D., 1989. Microsite variations in soil chemistry and nitrogen mineralization in a beech-maple forest. Soil Biol. Biochem. 21: 795–801 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Brummitt R.K. and Powell C.E., 1992. Authors of Plant Names. Royal Botanic Gardens, Kew Edinburgh, 733 p.
  • Côté B., Fyles J.W. and Djalilvand H., 2002. Increasing N and P resorption efficiency and proficiency in northern deciduous hardwoods with decreasing foliar N and P concentrations. Ann. For. Sci. 59: 275–281 [CrossRef] [EDP Sciences]
  • Del Arco J.M., Escudero A. and Garrido M.V., 1991. Effects of site characteristics on nitrogen retranslocation from senescing leaves. Ecology 72: 701–708 [CrossRef]
  • Escudero A., del Arco J.M. and Garrido M.V., 1992. The efficiency of nitrogen retranslocation from leaf biomass in Quercus ilex ecosystems. Vegetatio 99-100: 225–237 [CrossRef]
  • Güsewell S., 2004. N/P ratios in terrestrial plants: variation and functional significance. New Phytol. 164: 243–266 [CrossRef]
  • Haddad C.R.B., Lemos D.P. and Mazzafera P., 2004. Leaf life span and nitrogen in semideciduous forest tree species (Croton priscus and Hymenaea courbaril). Sci. Agricol. 61: 462–465
  • Hodgson J.G., Wilson P.S.,Hunt R., Grime J.P. and Thompson K., 1999. Allocating C-S-R plant functional types; a soft approach to a hard problem. Oikos 85: 282–294. [CrossRef]
  • Huang J., Wang X. and Yan E., 2007. Leaf nutrient concentration, nutrient resorption and litter decomposition in an evergreen broad-leaved forest in eastern China. For Ecol. Manage. 239: 150–158 [CrossRef]
  • Killingbeck K.T. and Costigan S.A., 1988. Element resorption in a guild of understory shrub species: niche differentiation and resorption thresholds. Oikos 53: 366–374 [CrossRef]
  • Killingbeck K.T., 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77: 1716–1727 [CrossRef]
  • Kutbay H.G., Yalcın E. and Bilgin A., 2003. Foliar N and P resorption and foliar nutrient concentrations in canopy and subcanopy of a Fagus orientalis Lipsky forest. Belg. J. Bot. 136: 35–44
  • Lusk C.H., Reich P.B., Montgomery R.A., Eckerly D.A. and Cavender-Bares J. 2008. Why are evergreen leaves so contrary about shade? Trends Ecol. Evol. 23: 299–303. [CrossRef] [PubMed]
  • Mediavilla S. and Escudero A., 2003. Leaf life span differs from retention time of biomass and nutrients in the crowns of evergreen species. Funct. Ecol. 17: 541–548 [CrossRef]
  • Milla R., Castro-Díez P., Maestro-Martínez M. and Montserrat-Martí G., 2005. Does the gradualness of leaf shedding govern nutrient resorption from senescing leaves in Mediterranean woody plants? Plant Soil 278: 303–313 [CrossRef]
  • Niinemets U. and Tamm U., 2005. Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands. Tree Physiol. 25: 1001–1014 [PubMed]
  • Norby R.J., Long T.M., Hartz-Rubin J.S. and O’Neill E.G., 2000. Nitrogen resorption in senescing tree leaves in a warmer CO2 enriched atmosphere. Plant Soil 224: 15–29 [CrossRef]
  • Pugnaire F.I. and Chapin F.S. III., 1993. Controls over nutrient resorption from leaves of evergreen Mediterranean species. Ecology 74: 124–129 [CrossRef]
  • Ratnam J., Sankaran M., Hanan N.P., Grant R.C. and Zambatis N., 2008. Nutrient resorption patterns of plant functional groups in a tropical savanna: variation and functional significance. Oecologia 157: 141–151 [CrossRef] [PubMed]
  • Regina I.S. and Tarazona T., 2001. Nutrient cycling in a natural beech forest and adjacent planted pine in northern Spain. Forestry 74: 11–28 [CrossRef]
  • Rejmánková E., 2005. Nutrient reorption in wetland macrophytes: comparison across several regions of different nutrient status. New Phytol. 167: 471–482 [CrossRef] [PubMed]
  • Rentería L.Y., Jaramillo V.J., Martínez-Yrízar A. and Pérez-Jiménez A., 2005. Nitrogen and phosphorus resorpion in trees of a Mexican tropical dry forest. Trees 19: 431–441 [CrossRef]
  • Silla F. and Escudero A., 2004. Nitrogen-use efficiency: trade-offs between N productivity and mean residence time at organ, plant and population levels. Funct. Ecol. 18: 511–521 [CrossRef]
  • Turkish Ministry of Agriculture and Forestry, 1991. Amasya City Landscape Features, Department of Rural Affairs, Ankara, 333 p.
  • Turkish Ministry of Agriculture 2002. Meteorological Bulletin, Mean and Extreme Temperature and Precipitation Values State Meteorological Service, Ankara, 675 p.
  • Van Heerwaarden L.M., Toet S. and Aerts R., 2003. Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions. Oikos 101: 664–669 [CrossRef]
  • Wright I.J. and Westoby M., 2003. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct. Ecol. 17: 10–19 [CrossRef]
  • Yuan Z.Y., Li L.H., Han X.G., Huang J.H., Jiang G.M. and Wan S.Q., 2005. Soil characteristics and nutrient resorption in Salix krylovii native to northern China. Plant Soil 273: 257–268 [CrossRef]