Free access
Ann. For. Sci.
Volume 67, Number 2, March-April 2010
Article Number 201
Number of page(s) 8
Published online 01 February 2010
  • Aulitzky H., 1961. Die Bodentemperaturverhältnisse in der Kampfzone oberhalb der Waldgrenze und im subalpinen Zirben-Lärchenwald. Mitt. Forstl. Bundesvers. Mariabrunn 59: 153–208
  • Battagila M., Beadle C. and Loughead S., 1996. Photosynthetic temperature response of Eucalyptus globulus and Eucalyptus nitens. Tree Physiol. 16: 81–99 [PubMed]
  • Benecke U. and Havranek W.M., 1980. Gas exchange of trees at altitudes up to timberline, Craigieburn Range, New Zealand. In: Benecke U., Davies M.D. (Eds.), Mountain environments and subalpine tree growth. Technical report 70, New Zealand Forest Service, pp. 195–212.
  • Benecke U., Schulze E.-D., Matyssek R. and Havranek W.M., 1981. Environmental control of CO2-assimilation and leaf conductance in Larix decidua Mill. I. A comparison of contrasting natural environments. Oecologia 50: 54–61 [CrossRef]
  • Beniston M., Diaz H.F. and Bradley R.S., 1997. Climate change at high elevation sites: an overview. Clim. Change 36: 233–251 [CrossRef]
  • Cartellieri E., 1935. Jahresgang von osmotischem Wert, Transpiration und Assimilation einiger Ericaceen der alpinen Zwergstrauchheide und von Pinus cembra. Jahrb. Wiss. Bot. 82: 460–506
  • Cavieres L.A., Rada F., Azocar A., Garcia-Nunez C. and Cabera H.M., 2000. Gas exchange and low temperature resistance in two tropical high mountain tree species in the Venezuelan Andes. Acta Oecol. 21: 203–211 [CrossRef]
  • Cunningham S.C. and Read J., 2002. Comparison of temperature and tropical rainforest tree species: photosynthetic response to temperature. Oecologia 133: 112–119 [CrossRef]
  • Day T.A., DeLucia E.H. and Smith W.K., 1989. Influence of cold soil and snow cover on photosynthesis and leaf conductance in two Rocky Mountain conifers. Oecologia 80: 546–552 [CrossRef]
  • DeLucia E.H., 1986. Effect of low root temperature on net photosynthesis, stomatal conductance and carbohydrate concentration in Engelmann spruce (Picea engelmanii Parry ex Engelm.) seedlings. Tree Physiol. 2: 143–154 [PubMed]
  • Diaz H.F. and Bradley R.S., 1997. Temperature variations during the last century at high elevation sites. Clim. Change 36: 253–279 [CrossRef]
  • Ellenberg H., 1996. Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht, 5. Auflage, Ulmer, Stuttgart, 1095 p.
  • FAO, ISRIC, and ISSS, 1998. World reference for soil resources. FAO, Rome, 109 p.
  • Grace J., Berninger F. and Nagy L., 2002. Impact of climate change on the treeline. Ann. Bot. 90: 537–544 [CrossRef] [PubMed]
  • Gruber A., Zimmermann J., Wieser G. and Oberhuber W., 2009a. Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine timberline ecotone. Ann. For. Sci. 66: 503. [CrossRef] [EDP Sciences] [PubMed]
  • Gruber A., Wieser G. and Oberhuber W., 2009b. Effects of simulated soil temperature on stem diameter increment of Pinus cembra at the alpine timberline: a new approach based on root zone roofing. Eur. J. For. Res. Doi: 10.1007/s10342-009-0305-3.
  • Häsler R., 1994. Ecophysiological investigations on cembran pine at timberline in the Alps, an overview. In: Schmidt W.C. and Holtmeier F.-K. (Eds.), Proceedings of an International workshop on Subalpine stone pines and their environment: the status of knowledge, Sept. 5–11, St. Moritz, Switzerland. Tech. Rep. INT-GTR-309, US Department of Agriculture, Forest Service, Intermountain Research Station, Ogden, UT, pp. 61–66.
  • Havranek W.M., 1972. Über die Bedeutung der Bodentemperatur für die Photosynthese und die Transpiration junger Forstpflanzen und für die Stoffproduktion an der Waldgrenze. Angew. Bot. 46: 101–116
  • Holtmeier F.-K. and Broll G., 2007. Treeline advance – driving processes and adverse factors. Landscape Online 1: 1–33 [CrossRef]
  • Hurtin K.R. and Marshall J.D., 2000. Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123: 32–40 [CrossRef]
  • IPCC, 2007. Climate change 2007, Cambridge University Press, Cambridge.
  • Jones P.D., Wigley T.M.L., Folland C.K., Parker D.E., Angelli J.K., Jebedeff S. and Hansen J.E., 1988. Evidence of global warming in the last decade. Nature 332: 791. [CrossRef]
  • Körner Ch., 2003. Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd ed., Springer, Berlin, 344 p.
  • Körner C., 2007, Climatic treelines: conventions, global patterns, causes. Erdkunde 61: 316–324. [CrossRef]
  • Körner C. and Paulsen L., 2004. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 31: 713–732 [CrossRef]
  • Larcher W., 1967. Die Berge einzigartiges Versuchsfeld der Natur. Jahrb. Ver. Schutze Alpenpflanzen Tiere 32: 1–7
  • Larcher W., 2001. Ökophysiologie der Pflanzen: Leben, Leistung und Stressbewältigung der Pflanzen in ihrer Umwelt, Ulmer, Stuttgart, 408 p.
  • Ledig F.T. and Korbobo D.R., 1983. Adaptation of sugar maple populations along altitudinal gradients: photosynthesis, respiration, and specific leaf weight. Am. J. Bot. 70: 256–265 [CrossRef]
  • Neuwinger I., 1970. Böden der subalpinen und alpinen Stufe in den Tiroler Alpen. Mitt. Ostalpin-Dinarischen Ges. 11: 135–150
  • Neuwinger I., 1980. Erwärmung, Wasserrückhalt und Erosions-bereitschaft subalpiner Böden. Mitt. Forstl. Bundesvers. Wien 129: 113–144
  • Oberhuber W., 2007. Limitation by growth processes. In: Wieser G. and Tausz M. (Eds.), Trees at their upper limit. Treelife limitation, at the alpine timberline, Plant Ecophysiology, Vol. 5, Springer, Dorthrecht, The Netherlands, pp. 131–143.
  • Pisek A., Larcher W., Moser W. and Pack I., 1969. Kardinale Temperaturbereiche der Photosynthese und Grenztemperaturen des Lebens der Blätter verschiedener Spermatophyten. III. Temperaturabhängigkeit und optimaler Temberaturbereich der Netto-Photosynthese. Flora Abt. B 158: 608–630
  • Pisek A., Larcher W., Vegis A. and Napp-Zinn K., 1973. The normal temperature range. In: Precht H., Christophersen J., Hensel H. and Larcher W. (Eds.), Temperature and life, Springer, Berlin, Heidelberg, New York, pp. 102–194.
  • Pisek A. and Winkler E., 1958. Assimilationsvermögen und Respiration der Fichte (Picea excelsa LINK) in verschiedenen Höhenlagen und der Zirbe (Picea abies L.) an der alpinen Waldgrenze. Planta 51: 518–543 [CrossRef]
  • Rada F., Azocar A., Gonzales J. and Briceno B., 1998. Leaf gas exchange in Espeletia schultzii Wedd, a giant caulescent rosette species, along an altitudinal gradient in the Venezuelan Andes. Acta Oecol. 19: 73–79 [CrossRef]
  • Richardson A.D., Berlyn G.P. and Gregorie T.G., 2001. Spectral reflectance of Picea rubens (Pinaceae) and Abies balsamifera (Pinaceae) needles along an elevational gradient, Mt. Moosilauke, New Hampshire, USA. Am. J. Bot. 88: 667–676 [CrossRef] [PubMed]
  • Sall T. and Pettersen P., 1994. A model of photosynthetic acclimation as a special case of reaction norms. Theor. Biol. 166: 1–8 [CrossRef]
  • Slatyer R.O., 1977. Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb. ex Sreng. I. Seasonal changes under field conditions in the Snowy Mountains area of South-east australy. Aust. J. Bot. 25: 1–20
  • Slatyer R.O., 1978. Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb. Ex Sreng. VII. Relationships between gradients of field temperature and photosynthetic temperature optima in the Snowy Mountains area. Aust. J. Bot. 26: 111–121 [CrossRef]
  • Sternberg P., De Lucia E.H., Schoettle A.W. and Smolander H., 1995. Photosynthetic light capture and processing from cell to canopy. In: Smith W.K. and Hinckley T.M. (Eds.), Ecophysiology of coniferous forests, Academic Press, San Diego, pp. 3–38.
  • Tranquillini W., 1976. Water relations at timberline. In: Lange O.L., Kappen L. and Schulze E.-D. (Eds.), Water relations and plant life. Problems and modern approaches, Ecological Studies, Vol. 19. Springer, Berlin, Heidelberg, New York, pp. 473–491.
  • Tranquillini W., 1979. Physiological ecology of the alpine timberline, Ecol. Stud. 31, Springer Verlag, Berlin, 137 p.
  • Von Caemmerer S. and Farquhar G.D., 1981. Some relationships between the biochemistry of photosynthesis and gas exchange of leaves. Planta 153: 376–387 [CrossRef] [PubMed]
  • Walther G.-R., 2003. Plants in a warmer world. Perspect. Plant. Ecol. Evol. Syst. 6: 169–185 [CrossRef]
  • Walther G.-R., Beißner S. and Pott R., 2005. Climate change and high mountain vegetation shifts. In: Broll G. and Keplin B. (Eds.), Mountain ecosystems, Studies in Treeline Ecology, Springer, Berlin, Heidelberg, pp. 77–95.
  • Wang Q., Ilo A., Tenhunen J. and Kalkubari Y., 2008. Annual and seasonal variations in photosynthetic capacity of Fagus crenata alongan elevation gradient in the Naeba Mountains, Japan. Tree Physiol. 28: 277–285 [PubMed]
  • Wieser G., 1997. Carbon dioxide gas exchange of cembran pine (Pinus cembra) at the alpine timberline during winter. Tree Physiol. 17: 473–477 [PubMed]
  • Wieser G., 2002. Exchange of trace gases at the tree – atmosphere interface: ozone. In: Gasche R., Papen H. and Rennenberg H. (Eds.), Trace gas exchange in forest ecosystems, Tree Physiology, Vol. 3, Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 211–226.
  • Wieser G., 2004. Environmental control of carbon dioxide gas exchange in needles of a mature Pinus cembra tree at the alpine timberline during the growing season. Phyton 44: 145–153
  • Wieser G., Matyssek R., Luzian R., Zwerger P., Pindur P., Oberhuber W. and Gruber A. 2009. Effects of atmospheric and climate change at the timberline of the Central European Alps. Ann. For. Sci. 66: 402. [CrossRef] [EDP Sciences] [PubMed]
  • Wieser G. and Stöhr D., 2005. Net ecosystem carbon dioxide exchange dynamics in a Pinus cembra forest at the upper timberline in the central Austrian Alps. Phyton 45: 233–242
  • Wieser G. and Tausz M., 2007. Trees at their upper limit: Treelife limitation at the alpine timberline, Plant Ecophysiology, Vol. 5, Springer, 232 p.