Free access
Issue
Ann. For. Sci.
Volume 67, Number 4, June 2010
Article Number 403
Number of page(s) 10
DOI http://dx.doi.org/10.1051/forest/2009123
Published online 12 March 2010
  • Alves A., Schwanninger M., Pereira H., and Rodrigues J., 2006. Calibration of NIR to assess lignin composition (H/G ratio) in maritime pine wood using analytical pyrolysis as the reference method, Holzforschung 60: 29–31. [CrossRef]
  • Arevalo Fuentes R.L., 2002. Influence des composantes secondaires et de la structure anatomique sur les propriétés physico-mécaniques du bois d’Acajou (Swietenia macrophylla King). Ph.D., Département des sciences du bois et de la forêt/ Faculté de foresterie et de géomatique, Université Laval, Québec, 145 p.
  • Baillères H., and Durand P., 2000. Non-destructive techniques for wood quality assessment of plantation-grown teak. Bois et Forêts des Tropiques 263: 17–29.
  • Baillères H., Davrieux F., and Ham-Pichavant F., 2002. Near infrared analysis as a tool for rapid screening of some major wood characteristics in a eucalyptus breeding programme. Ann. For. Sci. 59: 479–490. [CrossRef] [EDP Sciences]
  • Berry L.S., and Roderick L.M., 2005. Plant-water relations and the fibre saturation point. New Phytol. 168: 25–37. [CrossRef] [PubMed]
  • Bhat K.M., 1998. Properties of fast-grown teakwood: impact on end-users’ requirements. J. Trop. For. Prod. 4: 1–10.
  • Bhat K.M., and Priya P.B., 2004. Influence of provenance variation on wood properties of teak from the western Ghat region in India. IAWA J. 25: 273–282.
  • Boeriu G.C., Bravo D., Gosselink R.J.A., and Van Dam J.E.G., 2004. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind. Crops Prod. 20: 205–218. [CrossRef]
  • Brémaud I., 2006. Diversité des bois utilisés ou utilisables en facture d’instruments de musique. Ph.D. thesis in Mechanics, Univ. Montpellier II, 294 p.
  • Brinkmann K., Blaschke L., and Polle A., 2002. Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lignoproteins. J. Chem. Ecol. 28: 2483–2500. [CrossRef] [PubMed]
  • Chafe C., 1987. Collapse, volumetric shrinkage, specific gravity and extractives in Eucalyptus and others species. Part II: The influence of wood extractives. Wood Sci. Technol. 21: 27–41.
  • Cogdill R.P., Schimleck L.R., Jones P.D., Peter G.F., Daniels R.F., and Clark A., 2004. Estimation of the physical wood properties of Pinus taeda L. Radial strips using least squares support vector machines. J. Near Infrared Spec. 12: 263–269.
  • Edwin L., and Ashraf M.P., 2006. Assessment of biodeterioration of rubber wood exposed to field conditions. Int. Biodeter. Biodegr. 57: 31–36. [CrossRef]
  • Ern H., 1979. Die Vegetation Togo. Gliederrung, Gefährdung, Erhaltung. Willdenowia. 9: 295–312.
  • Guitard D., 1987. Mécanique du matériau bois et composites. Cépaduès, 238 p.
  • Gierlinger N., Jacques D., Schwanninger M., Wimmer R., Hinterstoisser B., and Paques L.E., 2003. Rapid predictions of natural durability of larch heartwood using Fourier transform near-infrared spectroscopy. Can. J. For. Res. 33: 1727–1736. [CrossRef]
  • Haluk J.P., Roussel C., and Thévénon M.F., 2001. Importance des quinones dans les propriétés antifongiques du Teck (Tectona grandis). Les cahiers Scientifiques du Bois 2: 77–83.
  • Hedrick E.S., Bennett M.R., Asce M., Rials T.G., and Kelley S.S., 2007. Correlation of near-infrared spectroscopy measurements with the properties of treated wood. J. Mater. Civil Eng. 19: 279–285. [CrossRef]
  • Hein G.P.R., Lima J.L., and Chaix G., 2009. Robustness of models based on near infrared spectra to predict the basic density in Eucalyptus urophylla wood. J. Near Infrared Spec. 17: 141–150. [CrossRef]
  • Hernandez R.E., 2007. Effects of extraneous substances, wood density and interlocked grain on fiber saturation point of hardwoods. Wood Mat. Sci. Eng. 2: 45–53. [CrossRef]
  • Kelley S.S., Rials T.G., Snell R., Groom L.H., and Sluiter A.D., 2004. Use of near- infrared spectroscopy to measure the chemical and mechanical properties of solid wood. Wood Sci. Technol. 38: 257–276.
  • Kokutse A.D., Baillères H., Stokes A., and Kokou K., 2004. Proportion and quality of heartwood in Togolese teak (Tectona grandis L.f). For. Ecol. Manage. 189: 37–48. [CrossRef]
  • Monrroy M., Mendonça R., Baeza J., Ruiz J., Ferraz A., and Freer J., 2008. Estimation of hexenuronic acids and kappa number in kraft pulps of Eucalyptus globulus by Fourier transform near infrared spectroscopy and multivariate analysis. J. Near Infrared Spec. 16: 121–128. [CrossRef]
  • Pahup S., Sunita J., and Sangeeta B., 1989. A 1, 4-Anthraquinone derivate from Tectona grandis. Phytochemistry 28: 1258–1259. [CrossRef]
  • Raymond C.A., Schimleck L.R., Muneri A., and Michell A.J., 2001. Nondestructive sampling of Eucalyptus globulus and E. nitens for wood properties. III. Predicted pulp yield using near infrared reflectance analysis. Wood Sci. Technol. 35: 203–215.
  • Ruelle J., Beauchene J., Thibaut A., and Thibaut B., 2007. Comparison of physical and mechanical properties of tension and opposite wood from ten tropical rainforest trees from different species. Ann. For. Sci. 64: 503–510. [CrossRef] [EDP Sciences]
  • Sanwo S.K., 1987. The characteristics of the crown-formed and stem-formed wood in plantation Grown teak (Tectona grandis L.f) in Nigeria. J. Inst. Wood Sci. 11: 85–88.
  • Schimleck L.R., Wright P.J., Michell A.J., and Wallis A.F.A., 1997. Near-infrared spectra and chemical composition of Eucalyptus globulus and E. nitens plantation woods. Appita J. 50: 40–45.
  • Schimleck L.R., and Michell A.J., 1998. Determination of within-tree variation of Kraft pulp yield using near-infrared spectroscopy. Appita J. 81: 229–236.
  • Schimleck L.R., Stürzenbecher R., Mora C., Jones P.D., and Daniels R.F., 2005. Comparison of Pinus taeda L. wood property calibrations based on NIR spectra from the radial-longitudinal and radial-transverse faces of wooden strips. Holzforschung 59: 214–218. [CrossRef]
  • Schimleck L.R., Sussenbach E., Leaf G., Jones P.D., and Huang C.L., 2007. Microfibril angle prediction of Pinus taeda wood samples based on tangential face NIR spectra. IAWA J. 28: 1–12.
  • Simatupang H.M. and Yamamoto K., 2000. Properties of teakwood (Tectona grandis L.f) and Mahogany (Swietenia macrophylla King) from manmade forest and influence on utilization. In: Hing Hon C., Matsumoto K. (Eds.). Proceeding of seminar on high value timber for plantation establishment. Conference Tawau, Sabah, Japan. JIRCAS. Report N° 16, pp. 103–114.
  • Simpson W. and TenWold A., 1999. Physical properties and moisture relations of wood. In: Wood handbook – Wood as an engineering material, US Department of Agriculture, Forest Service, Forest Products Laboratory, 463 p.
  • Stamm A.J., 1971. Review of nine methods for determining the fiber saturation points of wood and wood products. Wood Sci. 4: 114–128.
  • Taylor A.M., Baek S.H., Jeong M.K., and Nix G., 2008. Wood shrinkage prediction using NIR spectroscopy. Wood Fiber Sci. 40: 301–307.
  • Trokenbrodt M., and Josue J., 1999. Wood properties and utilisation potential of plantation teak (Tectona grandis) in Malaysia: a critical review. J. Trop. For. Prod. 5: 58–70.
  • Tsuchikawa S., 2007. A review of recent near infrared research for wood and paper. Appl. Spectrosc. Rev. 42: 43–71. [CrossRef]
  • Williams P.C., and Sobering D.C., 1993. Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. J. Near Infrared Spectrosc. 1: 25–33. [CrossRef]
  • Wright J.A., Birkett M.D., and Gambino M.J.T., 1990. Prediction of pulp yield and cellulose content from wood samples using near infrared reflectance spectroscopy. Tappi J. 73: 164–166.
  • Yamamoto K., Simatupang H.M., and Hashim R., 1998. Caoutchouc in teak wood (Tectona grandis L.f.): formation, location, influence on sunlight irradiation, hydrophobicity and decay resistance. Holz Roh Werkst. 56: 201–209. [CrossRef]