Free access
Ann. For. Sci.
Volume 67, Number 4, June 2010
Article Number 401
Number of page(s) 13
Published online 11 March 2010
  • Afzal-Rafii Z. and Dodd R.S., 2007. Chloroplast DNA supports a hypothesis of glacial refugia over postglacial recolonization in disjunct populations of black pine (Pinus nigra) in western Europe. Mol. Ecol. 16: 723–736. [CrossRef] [PubMed]
  • Allen H.D., 2003. Response of past and present Mediterranean ecosystems to environmental change. Prog. Phys. Geogr. 27: 359–377. [CrossRef]
  • Andreu L., Gutierrez E., Macias M., Ribas M., Bosch O. and Camarero J.J., 2007. Climate increases regional tree-growth variability in Iberian pine forests. Glob. Chang. Biol. 13: 1–12. [CrossRef]
  • Assmann E., 1970. The principles of forest yield study. Pergamon Press Ltd., Oxford, 506 p.
  • Barber V.A., Juday G.P. and Finney B.P., 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405: 668–673. [CrossRef] [PubMed]
  • Barbéro M., Losiel R., Queézel P., Richardson D.M. and Romane F., 1998. Pines of the Mediterranean Basin. In: Richardson D.M. (Ed.), Ecology and biogeography of Pinus, Cambridge University Press, Cambridge.
  • Beerling D.J., Heath J., Woodward F.I. and Mansfield T.A., 1996. Drought-CO2 interactions in trees: observations and mechanisms. New Phytol. 235–242.
  • Biondi F., 2000. Are climate-tree growth relationships changing in north-central Idaho? Arct. Antarct. Alp. Res. 32: 111–116. [CrossRef]
  • Biondi F. and Waikul K., 2004. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers Geosci. 30: 303–311. [CrossRef]
  • Boisvenue C. and Running S.W., 2006. Impacts of climate change on natural forest productivity – Evidence since the middle of the 20th century. Glob. Chang. Biol. 12: 1–21. [CrossRef]
  • Briffa K.R., Schweingruber F.H., Jones P., Osborn T.J., Shiyatov S.G. and Vaganov E.A., 1998. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391: 678–682. [CrossRef]
  • Brunet M., Saladié O., Jones P., Sigró J., Aguilar E., Moberg A., Lister D., Alexander W., López D. and Almarza C., 2006. The development of a new dataset of Spanish daily adjusted temperature series (SDATS) (1850–2003). Int. J. Climatol. 26: 1777–1802. [CrossRef]
  • Carrer M. and Urbinati C., 2006. Long-term change in the sensitivity of tree-ring growth to climate forcing of Larix decidua. New Phytol. 170: 861–872. [CrossRef] [PubMed]
  • Cook E.R., 1985. A time series analysis approach to tree-ring standardization. University of Arizona, Arizona, Tucson, p. 171.
  • D’ Arrigo R.D., Kaufmann R.K., Davi N., Jacoby G.C., Laskowski C., Myneni R.B. and Cherubini P., 2004. Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Global Biogeochem. Cycles 18: GB3021. [CrossRef]
  • D’Arrigo R.D., Wilson R., Liepert B. and Cherubini P., 2008. On the “Divergence problem” in northern forests: A review of the tree-ring evidence and possible causes. Glob. Planet. Change 2003 60: 289–305. [CrossRef]
  • Fritts H.C., 1976. Tree rings and Climate. Blackburn Press, Caldwell, New Jersey, 567 p.
  • González-Hidalgo J.C., Luis M.D., Raventós, J., Sánchez and J.R., 2001. Spatial distribution of seasonal rainfall trends in a western Mediterranean area. Int. J. Climatol. 21: 843–860. [CrossRef]
  • González-Rouco J.F., Jiménez J.L., Quesada V. and Valero F., 2001. Quality control and homogeneity of precipitation data in the southwest of Europe. J. Clim. 14: 964–978. [CrossRef]
  • Graumlich L.J., 1999. Subalpine tree growth, climate, and increasing CO2: an assessment of recent growth trends. Ecology 72: 1–11. [CrossRef]
  • Grissino-Mayer H.D., 2001. Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res. 57: 205–221.
  • Guiot J., 1991. The bootstrapped response method. Tree-ring Bull. 51: 39–41.
  • Hofgaard A., Tardif J. and Bergeron Y., 1999. Dendroclimatic response of Picea mariana and Pinus banksiana along a latitudinal gradient in the eastern Canadian boreal forest. Can. J. For. Res. 29: 1333–1346. [CrossRef]
  • Idso K.E. and Idso S.B., 1994. Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the past 10 years’ research. Agric. For. Meteorol. 69: 153–2003. [CrossRef]
  • Jacoby G.C. and D’Arrigo R.D., 1997. Tree rings, carbon dioxide, and climatic change. Proc. Natl. Acad. Sci. USA 94: 8350–8353. [CrossRef]
  • Jalut G., Amat A.E., Mora S.R.I., Fontugne M., Mook R., Bonnet L. and Gauquelin T., 1997. Holocene climatic changes in the western Mediterranean: installation of the Mediterranean climate C. R. Acad. Sci. Ser. II A Earth Planet. Sci. 325: 327–334.
  • Jump A.S., Hunt J.M. and Peñuelas J., 2006. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biol. 12: 2163–2174. [CrossRef]
  • Jump A.S., Hunt J.M., Peñuelas J. and Martínez-Izquierdo J.A., 2006. Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol. Ecol. 15: 3469–3480. [CrossRef] [PubMed]
  • Kienast F. and Luxmoore R.J., 1988. Tree-ring analysis and conifer growth responses to increased atmospheric CO2 levels. Oecologia 76: 487–495.
  • Knapp P.A., Soulé P.T. and Grissino-Mayer H.D., 2001. Detecting potential regional effects of increased atmospheric CO2 on growth rates of western juniper. Glob. Chang. Biol. 7: 903–917. [CrossRef]
  • Körner C., Asshoff R., Bignucolo O., Hättenschwiler S., Keel S.G., Peláez-Riedl S., Pepin S., Siegwolf R.T.W. and Zotz G., 2005. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309: 1360–1362. [CrossRef] [PubMed]
  • Leal S., Emaus D., Grabner M., Wimmer R. and Cherubini P., 2008. Tree rings of Pinus nigra from the Vienna basin region (Austria) show evidence of change in climatic sensitivity in the late 20th century. Can. J. For. Res. 38: 744–759. [CrossRef]
  • Lebourgeois F., 2000. Climatic signals in earlywood, latewood and total ring width of Corsican pine from western France. Ann. For. Sci. 57: 155–164. [CrossRef] [EDP Sciences]
  • Lenoir J., Gégout J.C., Marquet P.A., Ruffray P.D. and Brisse H., 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320: 1768–1771. [CrossRef] [PubMed]
  • Llorens L., Penuelas J., Estiarte M. and Bruna P., 2004. Contrasting growth changes in two dominant species of a Mediterranean shrubland submitted to experimental drought and warming. Ann. Bot. Lond. 94: 843–853. [CrossRef]
  • Macias M., Andreu L., Bosch O., Camarero J.J. and Gutiérrez E., 2006. Increasing aridity is enhancing silver fir (Abies alba Mill.) water stress in its south-Western distribution limit. Clim. Change 79: 289–313. [CrossRef]
  • Martín-Albertos S. and Gonzalez-Martínez S.C., 2000. Conservación de recursos genéticos de coníferas en España. Investig. Agrar. Sist. Recur. Forest. Fuera de serie 2: 151–183.
  • Martín-Benito D., Cherubini P., del Río M. and Cañellas I., 2008. Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 22: 363–373. [CrossRef]
  • Martín-Benito D., Gea-Izquierdo G., del Río M. and Cañellas I., 2008. Long-term trends in dominant-height growth of black pine using dynamic models. For. Ecol. Manage. 256: 1230–1238. [CrossRef]
  • Martínez-Vilalta J., López B.C., Adell N., Badiella L. and Ninyerola M., 2008. Twentieth century increase of Scots pine radial growth in NE Spain shows strong climate interactions. Glob. Chang. Biol. 14: 1868–2881.
  • Meehl G.A. and Tebaldi C., 2004. More Intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686): 994–997. [CrossRef] [PubMed]
  • Morison J.I.L., 1993. Response of plants to CO2 under water limited conditions. Plant Ecol. 104/105: 193–209. [CrossRef]
  • Nikolic D. and Tucic N., 1983. Isoenzyme variation within and among populations of European black pine (Pinus nigra Arnold). Silvae Genet. 32(3/4): 80–89.
  • Peñuelas J., Gordon C., Llorens L., Nielsen T., Tietema A., Beier C., Bruna P., Emmett B., Estiarte M. and Gorissen A., 2004. Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons, and species in a North-South European gradient. Ecosystems 7: 598–612.
  • Peñuelas J., Hunt J.M., Ogaya R. and Jump A.S., 2008. Twentieth century changes of tree-ring δ13C at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Glob. Chang. Biol. 14: 1076–1088. [CrossRef]
  • Piovesan G., Biondi F., Di Filippo A., Alessandrini A. and Maugeri M., 2008. Drought-driven growth reduction in old beech (Fagus sylvatica) forests of the central Apennines, Italy. Glob. Chang. Biol. 14: 1265–1281. [CrossRef]
  • Pisaric M.F.J., Carey S.K., Kokelj S.V. and Youngblut D., 2007. Anomalous 20th century tree growth, Mackenzie Delta, Northwest Territories, Canada. Geophys. Res. Lett. 34: L05714. [CrossRef]
  • Rathgeber C., Nicault A., Guiot J., Keller T., Guibal F. and Roche P., 2000. Simulated responses of Pinus halepensis forest productivity to climatic change and CO increase using a statistical model. Glob. Planet. Change 26: 405–421. [CrossRef]
  • Rinn F., 2003. TSAP-Win professional, Time series analysis and presentation for dendrochronology and related applications. Version 0.3, Quick Reference, Frank Rinn, Heidelberg, Germany, 20 p.
  • Rodrigo F.S., Esteban-Parra M.J., Pozo-Vazquez D. and Castro-Diez Y., 1999. A 500-year precipitation record in Southern Spain. Int. J. Climatol. 9: 1233–1253. [CrossRef]
  • Sarris D., Christodoulakis D. and Körner C., 2007. Recent decline in precipitation and tree growth in the eastern Mediterranean. Global Change Biol. 13: 1187–1200. [CrossRef]
  • Soulé P.T. and Knapp P.A., 2006. Radial growth rate increases in naturally occurring ponderosa pine trees: a late-20th century CO2 fertilization effect? New Phytol. 171: 379–390. [CrossRef] [PubMed]
  • Specht R.L., 1981. Primary production in Mediterranean climate ecosystems regenerating after fire. In: Di Castri F., Goodall D.W. and Specht R.L. (Eds.), Mediterranean-type shrublands, Elsevier, Amsterdam.
  • Tardif J., Camarero J.J., Ribas M. and Gutiérrez E., 2003. Spatiotemporal variability in tree growth in the central Pyrenees climatic and site influences. Ecol. Monogr. 73: 241–257. [CrossRef]
  • Touchan R., Xoplaki E., Funkhouser G., Luterbacher J., Hughes M.K., Erkan N., Akkemik Ü. and Stephan J., 2005. Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Clim. Dyn. 25: 75–98. [CrossRef]
  • Vila B., Vennetier M., Ripert C., Chandioux O., Liang E., Guibal F. and Torre F., 2008. Has global change induced divergent trends in radial growth of Pinus sylvestris and Pinus halepensis at their bioclimatic limit? The example of the Sainte-Baume forest (south-east France). Ann. For. Sci. 65: 709. [CrossRef] [EDP Sciences]
  • Wigley T.M.L., Briffa K.R. and Jones P.D., 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteor. 23: 201–213. [CrossRef]
  • Wilmking M., Juday G.P., Barber V.A. and Zald H.S.J., 2004. Recent climate warming forces opposite growth responses of white spruce at treeline in Alaska through temperature thresholds. Glob. Chang. Biol. 10: 1724–1736. [CrossRef]
  • Woodward F.I., 1987. Climate and plant distribution. Cambridge University Press, Cambridge.