Free access
Issue
Ann. For. Sci.
Volume 67, Number 5, July-August 2010
Article Number 508
Number of page(s) 10
DOI http://dx.doi.org/10.1051/forest/2010010
Published online 18 May 2010
  • Bower A.D. and Aitken S.N., 2008. Ecological genetics and seed transfer guidelines for Pinus albicaulis (Pinaceae). Am. J. Bot. 95: 66–76. [CrossRef] [PubMed]
  • Cavender-Bares J. and Bazzaz F.A., 2002. Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124: 8–18. [CrossRef]
  • Conifer Specialist Group, 1998. Austrocedrus chilensis. In: IUCN 2006. 2006 IUCN Red List of Threatened Species, www.iucnredlist.org, Downloaded on 31 August 2007.
  • Cordon V., Forquera J., and Gastiazoro J., 1993. Estudio microclimático del área cordillerana del sudoeste de la Provincia de Río Negro “cartas de precipitación”. Universidad Nac. del Comahue, Argentina, 19 p.
  • Cregg B.M., 1994. Carbon allocation, gas exchange, and needle morphology of Pinus ponderosa genotypes known to differ in growth and survival under imposed drought. Tree Physiol. 14: 883–898. [PubMed]
  • Falconer D.S. and Mackay T.F., 1996. Introduction to Quantitative Genetics. Longman, New York, 464 p.
  • Foster G.S., 1986. Trends in genetic parameters with stand development and their influence on early selection for volume growth in loblolly pine. For. Sci. 32: 944–959.
  • Gallo L., Pastorino M.J., and Donoso C., 2004. Variación en Austrocedrus chilensis (D. Don) Pic. Ser. et Bizzarri (Ciprés de la Cordillera). In: Donoso C., Ipinza R., Premoli A., and Gallo L. (Eds.), Variación intraespecífica en las especies arbóreas de los bosques templados de Chile y Argentina. Editorial Universitaria, Santiago de Chile, pp. 233–252.
  • Grosfeld J., 2002. Análisis de la variabilidad morfológica y arquitectural de Austrocedus chilensis (D. Don) Pic. Serm. et Bizzarri, Fitzroya cupressoides (Molina) I.M. Johnst., Pilgerodendron uviferum (D. Don) Florin y Cupressus sempervirens L. (Cupressaceae). Tesis doctoral, CRUB-UNComahue, Argentina.
  • Grosfeld J. and Barthélémy D., 2004. Primary growth and morphological markers of interannual growth limits in Cupressaceae from Patagonia. Bot. J. Linn. Soc. 146: 285–293. [CrossRef]
  • Gyenge J.E., Fernández M.E., Dalla-Salda G., and Schlichter T., 2005. Leaf and whole-plant water relations of the Patagonian conifer Austrocedrus chilensis (D. Don) Pic. Ser. et Bizzarri: implications on its drought resistance capacity. Ann. For. Sci. 62: 297–302. [CrossRef] [EDP Sciences]
  • Houle D., 1992. Comparing evolvability and variability of quantitative traits. Genetics 130: 195–204. [PubMed]
  • King D.A., 1990. The adaptive significance of tree height. Amer. Nat. 135: 809–828. [CrossRef]
  • Lauteri M., Pliura A., Monteverdi M.C., Brugnoli E., Villani F., and Eriksson G., 2004. Genetic variation in carbon isotope discrimination in six European populations of Castanea sativa Mill. originating from contrasting localities. J. Evol. Biol. 17: 1286–1296. [CrossRef] [PubMed]
  • Leinonen T., O’Hara R.B., Cano J.M., and Merilä J., 2008. Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. J. Evol. Biol. 21: 1–17. [PubMed]
  • López R., Zehavi A., Climent J., and Gil L., 2007. Contrasting ecotypic differentiation for growth and survival in Pinus canariensis. Aust. J. Bot. 55: 759–769. [CrossRef]
  • Lynch M. and Walsh B., 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland Massachusetts, 980 p.
  • McKay J.K. and Latta R.G., 2002. Adaptive population divergence: markers, QTL and traits. Trends Ecol. Evol. 17: 285–291. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Merilä J. and Crnokrak P., 2001. Comparison of genetic differentiation at marker loci and quantitative traits. J. Evol. Biol. 14: 892–903. [CrossRef]
  • Moles A.T. and Westoby M., 2004. Seedling survival and seed size: a synthesis of the literature. J. Ecol. 92: 372–383. [CrossRef]
  • Namkoong G., Usanis R.A., and Silen R.R., 1972. Age-related variation in genetic control of height growth in Douglas-fir. Theor. Appl. Genet. 42: 151–159. [CrossRef] [PubMed]
  • Namkoong G. and Conkle M.T., 1976. Time trends in genetic control over height growth in ponderosa pine. For. Sci. 22: 2–12.
  • Notivol E., García-Gil M.R., Alía R., and Savolainen O., 2007. Genetic variation of growth rhythm traits in the limits of latitudinal cline in Scots pine. Can. J. For. Res. 37: 540–551. [CrossRef]
  • O’Neill G., Adams T.W., and Aitken S.N., 2001. Quantitative genetics of spring and fall cold hardiness in seedlings from two Oregon populations of coastal Douglas-fir. For. Ecol. Manage. 149: 305–318. [CrossRef]
  • Pastorino M.J. and Gallo L.A., 2002. Quaternary evolutionary history of Austrocedrus chilensis, a cypress native to the Andean-Patagonian Forest. J. Biogeogr. 29: 1167–1178. [CrossRef]
  • Pastorino M.J., Gallo L.A., and Hattemer H.H., 2004. Genetic variation in natural populations of Austrocedrus chilensis, a cypress of the Andean-Patagonian Forest. Bioch. Syst. Ecol. 32: 993–1008. [CrossRef]
  • Pastorino M.J. and Gallo L.A., 2006. Mating system in a low-density natural population of the dioecious wind-pollinated Patagonian Cypress. Genetica 126: 315–321. [CrossRef] [PubMed]
  • Pastorino M.J. and Gallo L.A., 2009. Preliminary operational genetic management units of a highly fragmented forest tree species of southern South America. For. Ecol. Manage. 257: 2350–2358. [CrossRef]
  • Puntieri J., Barthélémy D., Martinez P., Raffaele E., and Brion C., 1998. Annual-shoot growth and branching patterns in Nothofagus dombeyi (Fagaceae). Can. J. Bot. 76: 673–685. [CrossRef]
  • R Development Core Team, 2008. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.Rproject.org.
  • Reich P.B., Wright I.J., Cavender-Bares J., Craine J.M., Oleksyn J., Westoby M., and Walters M.B., 2003. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164: 143–164. [CrossRef]
  • Roach D.A. and Wulff R.D., 1987. Maternal effects in plants. Ann. Rev. Ecol. Syst. 18: 209–235. [CrossRef]
  • SAS Institute Inc., 1989. SAS/STAT® User’s Guide, Version 6, SAS Institute Inc., Cary, NC.
  • Seiwa K. and Kikuzawa K., 1991. Phenology of tree seedlings in relation to seed size. Can. J. Bot. 69: 532–538. [CrossRef]
  • Squillace A.E., 1974. Average genetic correlation among offspring from open-pollinated forest trees. Silvae Genet. 23: 149–156.
  • Sokal R.R. and Rohlf F.J., 1981. Biometry: the principles and practice of statistics in biological research. Freeman, 2nd ed., San Francisco, 875 p.
  • Spitze K., 1993. Population structure in Daphnia obtusa: quantitative genetic and allozyme variation. Genetics 135: 367–374. [PubMed]
  • Via S. and Lande R., 1987. Genotype – environment interaction and the evolution of plasticity. Evolution 39: 505–522. [CrossRef]
  • Visscher P.M., 1998. On the sampling variance of intraclass correlations and genetic correlations. Genetics 149: 1605–1614. [PubMed]
  • Whiteley R.E., Black-Samuelsson S., and Jansson G., 2003. Within and between population variation in adaptive traits in Ulmus laevis, the European white elm. For. Genet. 10: 309–319.
  • Wright S., 1978. Evolution and the genetics of populations, Vol. 4, Variability within and among natural populations. University of Chicago Press, Chicago, 590 p.