Free access
Ann. For. Sci.
Volume 67, Number 5, July-August 2010
Article Number 505
Number of page(s) 8
Published online 29 April 2010
  • Aerts R., Boot R.G.A., and van der Aart P.J.M., 1991. The relation between above- and belowground biomass allocation patterns and competitive ability. Oecologia 87: 551–559. [CrossRef]
  • Alía R., Gil L., and Pardos J.A., 1995. Performance of 43 Pinus-pinaster Ait. provenances on 5 locations in central Spain. Silvae Genet 44: 75–81.
  • Alía R., Moro J., and Denis J.B., 1997. Performance of Pinus pinaster provenances in Spain: interpretation of the genotype by environment interaction. Can. J. For. Res. 27: 1548–1559. [CrossRef]
  • Anderson J.E., Williams J., Kriedeman P.E., Austin M.P., and Farquhar G.D., 1996. Correlations between carbon isotope discrimination and climate of native habitats for diverse eucalypt taxa growing in a common garden. Aus. J. Plant Physiol. 23: 311–320. [CrossRef]
  • Aranda I., Alía R., Ortega U., Dantas A.K., and Majada J., 2010. Intra-specific variability in biomass partitioning and carbon isotopic discrimination under moderate drought stress in seedlings from four Pinus pinaster populations. Tree Genet. Genomes 6: 169–178. [CrossRef]
  • Bagnouls F., and Gaussen H., 1953. Saison sèche et indice xérothermique. Bull. Soc. Hist. Nat. Toulouse 88: 193–239.
  • Barton A.M., 1993. Factors controlling plant distributions: drought, competition, and fire in montane pines in Arizona. Ecol. Monogr. 63: 367–397. [CrossRef]
  • Bloom A.J., Chapin F.S., and Mooney H.A., 1985. Resource limitation in plants - an economic analogy. Ann. Rev. Ecol. Syst. 16: 363–392.
  • Bucci G., González-Martínez S.C., et al., 2007. Range-wide phylogeography and gene zones in Pinus pinaster Ait. reveales by chloroplast microsatellite markers. Mol. Ecol. 16: 2137–2153. [CrossRef] [PubMed]
  • Chambel M.R., Climent J., and Alía R., 2007. Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes. Ann. For. Sci 64: 87–97. [CrossRef] [EDP Sciences]
  • Chapin F.S., 1980. The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst. 11: 233–260. [CrossRef]
  • Cohen D., 1970. Expected efficiency of water utilization in plants under different competition and selection regimes. Isr. J. Bot. 19: 50.
  • Cordell S., Goldstein G., Müller-Dombois D., Webb D., and Vitousek P.M., 1998. Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia 113: 188–196. [CrossRef]
  • Cregg B.M., and Zhang J.W., 2001. Physiology and morphology of Pinus sylvestris seedlings from diverse sources under cyclic drought stress. Forest. Ecol. Manage 154: 131–139. [CrossRef]
  • Danjon F., 1994. Stand features and height growth in a 36-year-old maritime pine (Pinus pinaster Ait.) provenance test. Silvae Genet. 43: 52–62.
  • Fernández M., Gil L., and Pardos J.A., 1999. Response of Pinus pinaster Ait. provenances at early age to water supply. I. Water relation parameters. Ann. For. Sci. 56: 179–187.
  • Fernández M., Gil L., and Pardos J.A., 2000. Effects of water supply on gas exchange in Pinus pinaster Ait. provenances during their first growing season. Ann. For. Sci. 57: 9–16. [CrossRef] [EDP Sciences]
  • González-Martínez S.C., Alía R., et al., 2002. Population genetic structure in a Mediterranean pine (Pinus pinaster Ait.): a comparison of allozyme markers and quantitative traits. Heredity 89: 199–206. [CrossRef] [PubMed]
  • Gonzalo J., 2008. Diagnosis fitoclimática de la España peninsular actualización y análisis geoestadístico aplicadoDepartamento de Silvopascicultura, ETSI Montes, Universidad Politécnia de Madrid (UPM), Madrid, p. 521.
  • Guyon J.P., and Kremer A., 1982. Stabilité phénotypique de la croissance en hauteur et cinétique journalièr de presión de sève et de la transpiration chez le pin maritime (Pinus pinaster Ait.). Can. J. For. Res. 12: 936–946. [CrossRef]
  • IPCC, 2007. Climate change 2007. The physical science basis: working group I contribution to the fourth assessment report of the IPCC, Cambridge University Press, Cambridge, UK.
  • Jones H.G., 1993. Drought tolerance and water-use efficiency. In: Smith J.A.C. and Griffiths H. (Eds.), Water Deficits: Plant Responses from Cell to Community, BIOS Scientific Publishers, Oxford, UK, pp. 193–203.
  • Körner C., 2003. Alpine Plant Life - Functional plant ecology of high mountain ecosystems, Springer-Verlag, Berlin, 344 p.
  • Leck M.A., Parker V.T., and Simpson R.L., 2008. Seedling ecology and evolution, Cambridge University Press, Cambridge, UK.
  • Ludlow M.M., 1989. Strategies of response to water stress. In: Kreeb K.H., Richter H., and Hinckley T.M. (Eds.), Structural and functional responses to environmental stresses, SPB Academic Publishing, The Hague, pp. 269–281.
  • Müller I., Schmid B., and Weiner J., 2000. The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspect. Plant Ecol. Evol. Syst. 3: 115–127. [CrossRef]
  • Nguyen-Queyrens A., and Bouchet-Lannat F., 2003. Osmotic adjustment in three-year-old seedlings of five provenances of maritime pine (Pinus pinaster) in response to drought. Tree Physiol. 23: 397–404. [PubMed]
  • Nguyen-Queyrens A., Ferhi A., Lousteau D., and Guehl J.M., 1998. Within-ring delta C-13 spatial variability and interannual variations in wood cellulose of two contrasting provenances of Pinus pinaster. Can. J. For. Res. 28: 766–773. [CrossRef]
  • Nguyen A., and Lamant A., 1989. Variation in growth and osmotic regulation of roots of water-stressed maritime pine (Pinus pinaster Ait.) provenances. Tree Physiol. 5: 123–133. [PubMed]
  • Pigott C.D., and Pigott S., 1993. Water as a determinant of the distribution of trees at the boundary of the Mediterranean zone. J. Ecol. 81: 557–566. [CrossRef]
  • Poorter H., and Nagel O., 2000. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aus. J. Plant Physiol. 27: 595–607.
  • Poorter L., 2001. Light-dependent changes in biomass allocation and their importance for growth of rain forest tree species. Funt. Ecol. 15: 113–123. [CrossRef]
  • Popma J., and Bongers F., 1988. The effect of canopy gaps on growth and morphology of seedlings of rain forest species. Oecologia 5: 625–632. [CrossRef]
  • Richards R.A., and Townley-Smith T.F., 1987. Variation in leaf area development and its effect on water use, yield and harvest index of droughted wheat. Aust. J. Agric. Res. 38: 983–992. [CrossRef]
  • Sáenz-Romero C., Guzmán-Reyna R.R., and Rehfeldt G.E., 2006. Altitudinal genetic variation among Pinus oocarpa populations in Michoacán, Mexico. Implications for seed zoning, conservation, tree breeding and global warming. For. Ecol. Manage. 229: 340–350. [CrossRef]
  • Sánchez-Gómez D., Zavala M.A., and Valladares F., 2008. Functional traits and plasticity linked to seedlings’ performance under shade and drought in Mediterranean woody species. Ann. For. Sci. 65: 311. [CrossRef] [EDP Sciences]
  • Schlichting C.D., 1986. The evolution of phenotypic plasticity in plants. Ann. Rev. Ecol. Syst. 17: 667–693. [CrossRef]
  • Shugart H.H., 1984. A theory of forest dynamics: the ecological implications of forest succession models, Springer-Verlarg, New York, 278 p.
  • Tilman D., 1988. Plant strategies and the dynamics and structure of plant communities, Princeton University Press, Princeton, New Jersey, USA.
  • Visscher P.M., 1998. On the sampling variance of intraclass correlations and genetic correlations. Genetics 149(1605-1614). [PubMed]
  • Wahid N., González-Martínez S.C., El Hadrami I., and Boulli A., 2006. Variation of morphological traits in natural populations of maritime pine (Pinus pinaster Ait.) in Morroco. Ann. For. Sci. 63: 83–92. [CrossRef] [EDP Sciences]
  • White T.L., Adams W.T., and Neale D.B., 2007. Forest Genetics, CAB International, Trownbridge, UK, 682 p.
  • Wilson J.B., 1988. A review of evidence on the control of shoot:root ratio, in relation to models. Ann. Bot. 61: 433–449.
  • Zhang J.W., Feng Z., Gregg B.M., and Schuman C.M., 1997. Carbon isotopic composition, gas exchange, and growth of three populations of ponderosa pine differing in drought tolerance. Tree Physiol. 17: 461–466. [PubMed]
  • Zhang J.W., Marshall J.D., and Fins L., 1996. Correlated population differences in dry matter accumulation, allocation, and water-use efficiency in three sympatric conifer species. For. Sci. 42: 242–249.