Free access
Ann. For. Sci.
Volume 67, Number 6, September 2010
Article Number 612
Number of page(s) 9
Published online 08 July 2010
  • Aguiar A., Roldão M.I., Esteves I. and Baeta J., 1999. Ensaio de Proveniências de Pinus pinaster Ait. Resultados de quatro anos de ensaio. Silva Lusitana 7: 39–47.
  • Alia R. and Martín S., 2003. EUFORGEN Technical Guidelines for genetic conservation and use for Maritime pine (Pinus pinaster). International Plant Genetic Resources Institute, Rome, Italy.
  • Alia R., Gil L. and Pardos J.A., 1995. Performance of 43 Pinus pinaster Ait. Provenances on 5 Locations in Central Spain. Silvae Genet 44: 75–81.
  • Alia R., Moro J. and Denis J.B., 1997. Performance of Pinus pinaster provenances in Spain: interpretation of the genotype by environment interaction. Can. J. For. Res. 27: 1548–1559. [CrossRef]
  • Chambel M.R., Climent J., Alía and R., 2007. Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes. Ann. For. Sci. 64: 87–97. [CrossRef] [EDP Sciences]
  • Codesido V. and Fernández-López J., 2008. Juvenile genetic parameters estimates for vigour, stem form, branching habit and survival in three Pinus radiata D. Don progeny tests in Galicia, Spain. Eur. J. For. Sci. 127: 315–325.
  • Costa e Silva J. and Potts B.M., 2006. Genotype by environment interaction for growth of Eucalyptus globulus in Australia. Tree Genet. Genomes 2: 61–75. [CrossRef]
  • Crossa J., 1990. Statistical analysis of multilocation trials. Adv. Agron. 44: 55–85. [CrossRef]
  • Danjon F., 1994. Stand Features and Height Growth in a 36-Year-Old Maritime Pine (Pinus pinaster Ait.) Provenance Test. Silvae Genet. 43: 52–62.
  • Destremeau D.X., Jolly H. and Thari T., 1976. Contribution à la connaissance des provenances de Pinus pinaster. Ann. Rech. For. Maroc 16: 101–153.
  • Eveno E., Collada C., Guevara M.A., Léger V., Soto A., Díaz L., Léger P., González-Martínez S.C., Cervera M.T., Plomion C. and Garnier-Géré P.H., 2008. Contrasting patterns of selection at Pinus pinaster Ait. Drought stress candidate genes as revealed by genetic differentiation analyses. Mol. Biol. Evol. 25: 417–437. [CrossRef] [PubMed]
  • Fernandes L., Rocheta M., Cordeiro J., Pereira S., Gerber S., Oliveira M.M. and Ribeiro M.M., 2008. Genetic variation, mating patterns and gene flow in a Pinus pinaster Aiton clonal seed orchard. Ann. For. Sci. 65: 706. [CrossRef] [EDP Sciences]
  • Gabriel K.R., 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika 58: 453–467. [CrossRef] [MathSciNet]
  • Gezan S.A., Huber D.A. and White T.L., 2006. Post hoc blocking to improve heritability and precision of best linear unbiased genetic predictions. Can. J. For. Res. 36: 2141–2147. [CrossRef]
  • González-Martínez S.C., Alía R. and Gil L., 2002. Population genetic structure in a Mediterranean pine (Pinus pinaster Ait.): a comparison of allozyme markers and quantitative traits. Heredity 89: 199–206. [CrossRef] [PubMed]
  • González-Martinez S.C., Mariette S., Ribeiro M.M., Burban C., Raffin A., Chambel M.R., Ribeiro C.A.M., Aguiar A., Plomion C., Alia R., Gil L., Vendramin G.G. and Kremer A., 2004. Genetic resources in maritime pine (Pinus pinaster Aiton): molecular and quantitative measures of genetic variation and differentiation among maternal lineages. For. Ecol. Manage. 197: 103–115. [CrossRef]
  • Guyon J.P. and Kremer A., 1982. Phenotypic stability of height growth, daily changes in sap pressure and transpiration in maritime pine (Pinus pinaster Ait.). Can. J. For. Res. 12: 936–946. [CrossRef]
  • Hopkins E.R. and Butcher T.B., 1993. Provenance comparisons of Pinus pinaster Ait. in Western Australia. CalmScience 1: 55–105.
  • Matziris D.I., 1982. Variation in growth and quality characters in Pinus pinaster provenances grown at seven sites in Greece. Silvae Genet. 31: 168–173.
  • Nguyen-Queyrens A., Loustau D., Ferhi A. and Guehl J.M., 1998. Within-ring δ13C spatial variability and interannual variations in wood cellulose of two contrasting provenances of Pinus pinaster. Can. J. For. Res. 28: 766–773. [CrossRef]
  • Piepho H.P., Mohring J., Melchinger A.E. and Buchse A., 2008. BLUP for phenotypic selection in plant breeding and variety testing, Euphytica 161, 209–228. [CrossRef]
  • Ribeiro M.M., Plomion C., Petit R., Vendramin G.G. and Szmidt A.E., 2001. Variation of chloroplast simple-sequence repeats in Portuguese maritime pine (Pinus pinaster Ait.). Theor. App. Genet. 102: 97–103. [CrossRef]
  • Sierra de Grado R., Moulia B., Fournier M., Alía R. and Díez-Barra R., 1997. Genetic control of stem form in Pinus pinaster Ait. seedlings exposed to lateral light. Trees-Struct Funct 11: 455–461.
  • Simsek Y., Tulukcu M. and Toplu F., 1985. Studies on the variation in growth and quality characteristics of Pinus pinaster (Ait.) provenance trials in Turkey. Ormancilik Arastirma Enstitusu Yayinlari, Ankara, Teknik Bülten Serisi No. 149.
  • Tognetti R., Michelozzi M., Lauteri M., Brugnoli E. and Giannini R., 2000. Geographic variation in growth, carbon isotope discrimination, and monoterpene composition in Pinus pinaster Ait. provenances. Can. J. For. Res. 30: 1682–1690. [CrossRef]
  • Yan W. and Tinker N.A., 2006. Biplot analysis of multi-environment trial data: principles and applications. Can. J. Plant. Sci. 86: 623–645.
  • Yan W., 2002. Singular-Value Partitioning in biplot analysis of multienvironment Trial Data. Agron. J. 94: 990–996. [CrossRef]
  • Yan W., Hunt L.A., Sheng Q. and Szlavnics Z., 2000. Cultivar evaluation and mega-environment investigation based on the GGE Biplot. Crop. Sci. 40: 597–605. [CrossRef]
  • Yan W., Kang M.S., Ma B., Woods S. and Cornelius P.L., 2007. GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data. Crop. Sci. 47: 641–653.
  • Zas R., Merlo E. and Fernández-López J., 2004. Genotype x environment interaction in maritime pine families in Galicia, northwest Spain. Silvae Genet. 53: 175–182.