Free access
Ann. For. Sci.
Volume 67, Number 6, September 2010
Article Number 610
Number of page(s) 8
Published online 08 July 2010
  • Abrams M.D. and Kubiske M.E., 1990. Leaf structural characteristic of 31 hardwood and conifer tree species in Central Wisconsin: influence of light regime and shade tolerance rank. For. Ecol. Manage. 31: 245–253. [CrossRef]
  • Barthod S. and Epron D., 2005. Variations of construction costs associated to leaf area renewal in saplings of two co-occurring temperate tree species (Acer platanoides L. and Fraxinus excelsior L.) along a light gradient. Ann. For. Sci. 62: 545–551. [CrossRef] [EDP Sciences]
  • Ellsworth D.S. and Reich P.B., 1993. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96: 169–178. [CrossRef]
  • Frak E., Le Roux X., Millard P., Dreyer E., Jaouen G., Saint-Joanis B. and Wendler R., 2001. Changes in total leaf nitrogen and partitioning of leaf nitrogen drive photosynthetic acclimation to light in fully developed walnut leaves. Plant, Cell Environ. 24: 1279–1288. [CrossRef]
  • Gardiner E.S, Löf M., O’Brien J.J., Stanturf J.A. and Madsen P., 2009. Photosynthetic characteristics of Fagus sylvatica and Quercus robur established for stand conversion from Picea abies. For. Ecol. Manage. 258: 868–878. [CrossRef]
  • Givnish T.J., 1988. Adaptation to sun and shade: a whole-plant perspective. Aust. J. Plant Phys. 15: 63–92. [CrossRef]
  • Hallik L., Niinemets Ü. and Wright I.J., 2009. Are species shade and drought tolerance reflected in leaf-level structural and functional differentiation in Northern Hemisphere temperate woody flora? New Phytol. 184: 257–274. [CrossRef] [PubMed]
  • Kimmins, J.P., 1997. Forest ecology – a foundation for sustainable management. Prentice Hall, Upper Saddle River/New Jersey, 596 p.
  • Kitajima K., 1994. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98: 419–428. [CrossRef]
  • Kobe, R.K., Pacala, S.W., Silander J.A., Jr. and Canham C.D., 1995. Juvenile tree survivorship as a component of shade tolerance. Ecol. Appl. 5: 517–532. [CrossRef]
  • Kull O. and Niinemets Ü., 1993. Variation in leaf. morphometry and nitrogen concentration in Betula pendula Roth., Corylus avellana L. and Lonicera xylosteum L. Tree Physiol. 12: 311–318. [PubMed]
  • Le Roux X., Walcroft A.S., Daudet F.A., Sinoquet H., Chaves M.M., Rodriques A. and Osorio L., 2001. Photosynthetic light acclimation in peach leaves: importance of changes in mass: area ratio, nitrogen concentration, and leaf nitrogen partitioning. Tree Physiol. 21: 377–386. [PubMed]
  • LI-COR, Inc., 1987. Li-3100 Area Meter. Instruction Manual, Lincoln, Nebraska.
  • Niinemets Ü., 1995. Distribution of foliar carbon and nitrogen across the canopy of Fagus sylvatica: adaptation to a vertical light gradient. Acta Oecol. 16: 525–541.
  • Niinemets Ü., 1997. Role of foliar nitrogen in light harvesting and shade tolerance of four temperate deciduous woody species. Funct. Ecol. 11: 518–531. [CrossRef]
  • Niinemets Ü., 1999. Energy requirement for foliage formation is not constant along canopy light gradients in temperate deciduous trees. New Phytol. 144: 459–470. [CrossRef]
  • Niinemets Ü. and Kull O., 1998. Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: implications for foliage morphological plasticity. Tree Physiol. 18: 467–479. [PubMed]
  • Niinemets Ü. and Tenhunen J.D., 1997. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ. 20: 845–866. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Petritan A.M., Lüpke B.v. and Petritan I.C., 2007. Effects of shade on growth and mortality of sycamore maple (Acer pseudoplatanus), ash (Fraxinus excelsior) and beech (Fagus sylvatica) saplings. Forestry 80: 397–412. [CrossRef]
  • Petritan A.M., Lüpke B.v. and Petritan I.C., 2009. Influence of light availability on growth, leaf morphology and plant architecture of beech (Fagus sylvatica L.), sycamore maple (Acer pseudoplatanus L.) and ash (Fraxinus excelsior L.). Eur. J. For. Res. 128: 61–74. [CrossRef]
  • Poorter H. and Bergkotte M., 1992. Chemical composition of 24 wild species differing in relative growth rate. Plant Cell Environ. 15: 221–229. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Poorter H. and Villar R., 1997. The fate of acquired carbon in plants: chemical composition and costruction costs. In: Bazzaz F.A. and Grac J., (Eds.), Plant resource allocation, Academic Press, New York, pp. 39–72.
  • Poorter H., Pepin S., Rijkers T., DeJong Y., Evans J.R. and Körner C., 2006. Construction costs, chemical composition and payback time of high- and low-irradiance leaves. J. Exp. Bot. 57: 355–371. [CrossRef] [PubMed]
  • Regents Instruments Inc. Sainte-Foy, Québec, 2003. WinScanopy for hemispherical image analysis.
  • Röhrig E, Bartsch N, Lüpke B.v., 2006. Waldbau auf ökologischer Grundlage. Eugen Ulmer (zugleich UTB 8310), Stuttgart, 480 p.
  • Rosati A., Esparza G., DeJong T.M. and Pearcy R.W., 1999. Influence of canopy light environment and nitrogen availability on leaf photosynthetic nitrogen-use efficiency of field-grown nectarine trees. Tree Physiol. 19: 173–180. [PubMed]
  • Sims D.A. and Pearcy R.W., 1994. Scaling sun and shade photosynthetic acclimation of Alocasia macrorrhiza to whole-plant performance – I. Carbon balance and allocation at different daily photon flux densities. Plant Cell Environ. 17: 881–887. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • StatSoft, Inc. 2005 STATISTICA für Windows [Software-System für Datenanalyse] Version 7.1.
  • Valladares F. and Niinemets Ü., 2008. Shade Tolerance, a Key Plant Feature of Complex Nature and Consequences Annu. Rev. Ecol. Evol. Syst. 39: 237–57. [CrossRef]
  • Vertregt N. and Penning de Vries F.W.T., 1987. A rapid method for determining the efficiency of biosynthesis of plant biomass. J. Theor. Biol. 128: 109–119. [CrossRef]
  • Wright I.J., Reich P.B., Westoby M., Ackerly D.D., Baruch Z., Bongers F., Cavender-Bares J., Chapin T., 2004. The world-wide leaf economics spectrum. Nature 428: 821–827. [CrossRef] [PubMed]