Free access
Issue
Ann. For. Sci.
Volume 67, Number 8, December 2010
Article Number 816
Number of page(s) 10
Section Original articles
DOI http://dx.doi.org/10.1051/forest/2010055
Published online 28 October 2010
  • Badeau V., Becker M., Bert D., Dupouey J.-L., Lebourgeois F., and Picard J.-F., 1996. Long-term growth trends of trees: ten years of dendrochronological studies in France. In: Spiecker H., Mielikaïnen K., Köhl M., Skovsgaard J. (Eds.), Growth Trends in European Forests. Studies from 12 Countries, European Forest Institute Research Report 5, Springer, Berlin, Heidelberg, New York, 372: 167–181.
  • Bontemps J.D., Herve J.C., and Dhote J.F., 2009. Long-term changes in forest productivity: a consistent assessment in even-aged stands. For. Sci. 55: 549–564.
  • Bergès L., Dupouey J.-L., and Franc A., 2000. Long-term changes in wood density and radial growth of Quercus petraea Liebl. in northern France since the middle of the nineteenth century. Trees 14: 398–408. [CrossRef]
  • Blake L., Goulding K.W.T., Mott C.J.B., and Johnston A.E., 1999. Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station, UK. Eur. J. Soil Sci. 50: 401–412. [CrossRef]
  • Bouriaud O., Breda N., Le Moguedec G., and Nepveu G., 2004. Modelling variability of wood density in beech as affected by ring age, radial growth and climate. Trees 18: 264–276.
  • Briffa K.R., Schweingruber F.H., Jones P.D., Osborn T.J., Shiyatov S.G., and Vaganov E.A., 1998. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391: 678–682. [CrossRef]
  • Briffa K.R., Osborn T.J., Schweingruber F.H., Jones P.D., Shiyatov S., and Vaganov E.A., 2002. Tree-ring width and density data around the Northern Hemisphere: Part 1, Local and regional climate signals. Holocene 12: 737–757.
  • Cao T.J., Valsta L., Harkonen S., Saranpaa P., and Makela A., 2008. Effects of thinning and fertilization on wood properties and economic returns for Norway spruce. For. Ecol. Manag. 256: 1280–1289. [CrossRef]
  • Conkey L.E., 1988. Decline in old-growth red spruce in Western Maine – an analysis of wood density and climate. Can. J. For. Res. 18: 1063–1068. [CrossRef]
  • Decoux V., Varcin E., and Leban J.M., 2004. Relationships between the intra-ring wood density assessed by X-ray densitometry and optical anatomical measurements in conifers. Consequences for the cell wall apparent density determination. Ann. For. Sci. 61: 251–262.
  • De Vries W., Reinds G.J., Gundersen P., and Sterba H., 2006. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Glob. Change Biol. 12: 1151–1173. [CrossRef]
  • Duplat P. and TranHa M., 1997. Modelling the dominant height growth of sessile oak (Quercus petraea Liebl.) in France. Inter-regional variability and effect of the recent period (1959–1993). Ann. Sci. For. 54: 611–634.
  • Freyburger C., Longuetaud F., Mothe F., and Leban J.M., 2009. Measuring wood density using X-ray computed tomography. Ann. For. Sci. 66, 804. [CrossRef] [EDP Sciences]
  • Fritts H.C., 1976. Tree Rings and Climate. Academic Press, London.
  • Gagen M., McCarroll D., and Edouard J.L., 2006. Combining ring width, density and stable carbon isotope proxies to enhance the climate signal in tree-rings: An example from the southern French Alps. Clim. Change 78: 363–379. [CrossRef]
  • Gerendiain A.Z., Peltola H., Pulkkinen P., Jaatinen R., Pappinen A., and Kellomaki S., 2007. Differences in growth and wood property traits in cloned Norway spruce (Picea abies). Can. J. For. Res. 37: 2600–2611. [CrossRef]
  • Guilley E., Hervé J.-C., Huber F., and Nepveu G., 1999. Modelling variability of within rings density components in Quercus petraea Liebl. with mixed-effects models and simulating the influence of contrasting silvicultures on wood density. Ann. For. Sci. 56: 449–458. [CrossRef] [EDP Sciences]
  • Gutierrez Oliva A., Baonza Merino V., Fernandez-Golfin Seco J.I., Conde Garcia M., and Hermoso Prieto E., 2006. Effect of growth conditions on wood density of Spanish Pinus nigra. Wood Sci. Technol. 40: 190–204. [CrossRef]
  • Hannrup B., Cahalan C., Chantre G., Grabner M., Karlsson B., Le Bayon I., Lloyd Jones G., Müller U., Pereira H., Rodrigues J.C., Rosner S., Rozenberg P., Whilelmsson L., and Wimmer R., 2004. Genetic parameters of growth and wood quality traits in Picea abies. Scan. J. For. Res. 19: 14–29. [CrossRef]
  • Hattenschwiler S., Schweingruber F.H., and Korner C., 1996. Tree ring responses to elevated CO2 and increased N deposition in Picea abies. Plant Cell Environ. 19: 1369–1378. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Hastings M.G., Jarvis J.C., and Steig E.J., 2009. Anthropogenic impacts on nitrogen isotopes of ice-core nitrate. Science 324: 1288–1288. [CrossRef] [PubMed]
  • Hervé J.C., 1999. Mixed-effects modelling of between-tree and within-tree variations: application to wood basic density in the stem, In: Leban J.-M., Hervé J.-C. (Eds.), FAIR CT96–1915. Product properties prediction – improved utilization in the forestry – wood chain applied on spruce sawnwood, Sub-task 2.1, Final report, 67 p., pp. 25–42.
  • Ikonen V.P., Peltola H., Wilhelmsson L., Kilpelainen A., Vaisanen H., Nuutinen T., and Kellomaki S., 2008. Modelling the distribution of wood properties along the stems of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as affected by silvicultural management. For. Ecol. Manage. 256: 1356–1371. [CrossRef]
  • IPCC, 2007. Climate Change 2007. Synthesis report, 52.
  • Jaakkola T., Makinen H., and Saranpaa P., 2005. Wood density in Norway spruce: changes with thinning intensity and tree age. Can J. For. Res. 35: 1767–1778. [CrossRef]
  • Jyske T., Makinen H., and Saranpaa P., 2008. Wood density within Norway spruce stems. Silva Fennica 42: 439–455.
  • Jyske T., Holtta T., Makinen H., Nojd P., Lumme, I., and Spiecker H., 2010. The effect of artificially induced drought on radial increment and wood properties of Norway spruce. Tree Physiol. 30: 103–115. [CrossRef] [PubMed]
  • Kahle H.-P., Karjalainen, Schuck T.A., and Ågren G.I., 2008. Causes and consequences of forest growth trends in Europe. Res. Rep. No. 21. European Forest Institute, Joensuu, Finland, 261.
  • Karenlampi P.P. and Riekkinen M., 2003. Prediction of the heartwood content of pine logs. Wood Fiber Sci. 35: 83–89.
  • Kilpelainen A., Peltola H., Ryyppo A., and Kellomaki S., 2005. Scots pine responses to elevated temperature and carbon dioxide concentration: growth and wood properties. Tree Physiol. 25: 75–83. [PubMed]
  • Kostiainen K., Kaakinen S., Saranpaa P., Sigurdsson B.D., Linder S., and Vapaavuori E., 2004. Effect of elevated CO2 on stem wood properties of mature Norway spruce grown at different soil nutrient availability. Glob. Change Biol. 10: 1526–1538. [CrossRef]
  • Kostiainen K., Kaakinen S., Saranpaa P., Sigurdsson B.D., Lundqvist S.O., Linder S., and Vapaavuori E., 2009. Stem wood properties of mature Norway spruce after 3 years of continuous exposure to elevated CO2 and temperature. Glob. Change Biol. 15: 368–379. [CrossRef]
  • Le Moguedec G., Dhote J.F., and Nepveu G., 2002. Choosing simplified mixed models for simulations when data have a complex hierarchical organization. An example with some basic properties in Sessile oak wood (Quercus petraea Liebl.). Ann. For. Sci. 59: 847–855. [CrossRef] [EDP Sciences]
  • Lindström M.J., and Bates D.M. (1990). Nonlinear mixed effect models for repeated measures data. Biometrics 46: 673–687. [CrossRef] [MathSciNet] [PubMed]
  • Longuetaud F., Mothe F., Leban J.M., and Makela A., 2006. Picea abies sapwood width: variations within and between trees. Scan. J. For. Res. 21: 41–53. [CrossRef]
  • Lundgren C., 2004a. Cell wall thickness and tangential and radial cell diameter of fertilized and irrigated Norway spruce. Silva Fennica 38: 95–106.
  • Lundgren C., 2004b. Microfibril angle and density patterns of fertilized and irrigated Norway spruce. Silva Fennica 38: 107–117.
  • Mäkinen H., Saranpää P., and Linder S., 2002. Wood density variation of Norway spruce in relation to nutrient optimization and fibre dimensions. Can. J. For. Res. 32: 185–194. [CrossRef]
  • Mäkinen H., Jaakkola T., Piispanen R., and Saranpää P., 2007. Predicting wood and tracheid properties of Norway spruce. For. Ecol. Manage. 241: 175–188. [CrossRef]
  • Moisselin J.-M., Schneider M., Canellas C., and Mestre O., 2002. Changements climatiques en France au XXe siècle, Étude de longues séries de données homogénéisées françaises de précipitations et températures. La Météorologie 38: 45–56.
  • Molteberg D. and Hoibo A., 2007. Modelling of wood density and fibre dimensions in mature Norway spruce. Can. J. For. Res. 37: 1373–1389. [CrossRef]
  • Mothe F., Duchanois G., Zannier B., and Leban J.-M., 1998. Analyse microdensitométrique appliqué au bois : une méthode de traitement des données aboutissant à la description synthétique et homogène des profils de cernes (programme CERD). Ann. Sci. For. 55: 301–315. [CrossRef]
  • Olesen P.O., 1976. The interrelation between basic density and ring width of Norway spruce. Forstlige Forsoegsvaesen i Danmark 34.
  • Pape R., 1999. Effects of thinning regime on the wood properties and stem quality of Picea abies. Scan. J. For. Res. 14: 38–50.
  • Pinheiro J., Bates D., DebRoy S., Sarkar D., and the R Core team (2009). nlme: Linear and Nonlinear Mixed Effects Models, R package version 3.1-93.
  • Polge H. and Nicholls J.W.P., 1972. Quantitative radiography and the densitometric analysis. Wood Sci. 5: 51–59.
  • Raiskila S., Saranpaa P., Fagerstedt K., Laakso T., Loija M., Mahlberg R., Paajanen L., and Ritschkoff A.C., 2006. Growth rate and wood properties of Norway spruce cutting clones on different sites. Silva Fennica 40: 247–256.
  • Rozenberg P., Franc A., Bastien C., and Cahalan C., 2001. Improving models of wood density by including genetic effects: a case study in Douglas-fir. Ann. For. Sci. 58: 385–394. [CrossRef] [EDP Sciences]
  • Seynave I., Gegout J.C., Herve J.C., Dhote J.F., Drapier J., Bruno E., and Dume G., 2005. Picea abies site index prediction by environmental factors and understorey vegetation: a two-scale approach based on survey databases. Can. J. For. Res. 35: 1669–1678. [CrossRef]
  • St-Germain J.L. and Krause C., 2008. Latitudinal variation in tree-ring and wood cell characteristics of Picea mariana across the continuous boreal forest in Quebec. Can. J. For. Res. 38: 1397–1405. [CrossRef]
  • Spiecker H., Mielikaïnen K., Köhl M., and Skovsgaard J., 1996. Growth Trends in European Forests. Studies from 12 Countries, European Forest Institute Research Report 5. Springer, Berlin, Heidelberg, New York, 372.
  • Taylor A.M., Gartner B.L., and Morrell J.J., 2002. Heartwood formation and natural durability – a review. Wood Fiber Sci. 34: 587–611.
  • Vitousek P.M., Aber J.D., Goodale C.L., and Aplet G.H., 2000. Global change and wilderness science. USDA Forest Service Proceedings, RMRS–P–15 (Rocky Mountains Research Station Proceedings 15 Wilderness), Science in a time of change. Conferences. Vol. 1: Changing perspectives and future directions, 5–9.
  • Wang L., Payette S., and Begin Y., 2002. Relationships between anatomical and densitometric characteristics of black spruce and summer temperature at tree line in northern Quebec. Can. J. For. Res. 32: 477–486. [CrossRef]
  • Wilhelmsson L., Arlinger J., Spangberg K., Lundqvist S.O., Grahn T., Hedenberg O., and Olsson L., 2002. Models for predicting wood properties in stems of Picea abies and Pinus sylvestris in Sweden. Scan. J. For. Res. 17: 330–350. [CrossRef]
  • Wimmer R. and Grabner M., 2000. A comparison of tree-ring features in Picea abies as correlated with climate. Iawa J. 21: 403–416.
  • Yasue K., Funada R., Kobayashi O., and Ohtani J., 2000. The effects of tracheid dimensions on variations in maximum density of Picea glehnii and relationships to climatic factors. Trees Struct. Funct. 14: 223–229.
  • Zobel B.J. and Van Buijtenen J.P., 1989. Wood variation: its causes and control. Springer-Verlag, Berlin, Heidelberg, 363.