Open Access
Ann. For. Sci.
Volume 66, Number 2, March 2009
Article Number 202
Number of page(s) 8
Published online 28 February 2009
References of  Ann. For. Sci. 66 (2009) 202
  1. Archambault L. and Beaulieu J., 1985. Réduction de croissance en volume occasionnée au sapin baumier, suite à la défoliation par la tordeuse des bourgeons de l'épinette. For. Chron. 61: 10–13.
  2. Assmann E., 1970. The principles of forest yield study: studies in the organic production, structure, increment, and yield of forest stands, Pergamon Press, Oxford.
  3. Baker F.S., 1949. A revised tolerance table. J. For. 47: 179–181.
  4. Batho A. and Garcia O., 2006. De Perthuis and the origins of site index: a historical note. FBMIS 1: 1–10.
  5. Belyea R.M., 1952. Death and deterioration of balsam fir weakened by spruce budworm defoliation in Ontario. Part II. An assessment of the role of associated insect species in the death of severely weakened trees. J. For. 50: 729–738.
  6. Blais J.R., 1958. Effects of defoliation by spruce budworm (Choristoneura fumiferana Clem.) on radial growth at breast height of balsam fir (Abies balsamea (L.) Mill.) and white spruce (Picea glauca (Moench) Voss.). For. Chron. 34: 39–47.
  7. Brandt J.P., Cerezke H.F., Mallett K.I., Volney W.J.A., and Weber J.D., 2003. Factors affecting trembling aspen (Populus tremuloides Michx.) health in the boreal forest of Alberta, Saskatchewan, and Manitoba, Canada. For. Ecol. Manage. 178: 287–300.
  8. Cajander A.K., 1926. Theory of forest types. Acta For. Fenn. 29: 1–108.
  9. Carmean W.H., 1975. Forest site quality evaluation in the United States. Adv. Agron. 27: 209–269.
  10. Curtis R.O. and Marshall D.D., 2005. Permanent-plot procedures for silvicultural and yield research. Gen. Tech. Rep. PNW-GTR-634, Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station, 86 p.
  11. Dahms W.G., 1966. Effect of kind and number of measured tree heights on lodgepole pine site-quality estimates. US Forest Service Research Paper PNW-36.
  12. Erdle T.A. and MacLean D.A., 1999. Stand growth model calibration for use in forest pest impact assessment. For. Chron. 75: 141–152.
  13. Fellin D.G. and Dewey J.E., 1982. Western Spruce Budworm. Forest Insect and Disease Leaflet No. 53, US Department of Agriculture, Forest Service.
  14. Feng Z., Stadt K.J., Lieffers V.J., and Huang S., 2006. Linking juvenile growth of white spruce with site index. For. Chron. 82:819–824.
  15. Forest Productivity Council of British Columbia, 1998. Definition and estimation of top height for site index. Forest Productivity Council Policy,
  16. Fortin M., Bédard S., DeBlois J., and Meunier S., 2008. Predicting individual tree mortality in northern hardwood stands under uneven-aged management in southern Québec, Canada. Ann. For. Sci. 65: 205 [EDP Sciences] [CrossRef].
  17. Franklin J.F., Shugart H.H., and Harmon M.E., 1987. Tree death as an ecological process: the causes, consequences and variability of tree mortality. BioScience 37: 550–556 [CrossRef].
  18. Garcia O., 1998. Estimating top height with variable plot sizes. Can. J. For. Res. 28: 1509–1517 [CrossRef].
  19. Garcia O. and Batho A., 2005. Top height estimation in Lodgepole pine sample plots. West. J. For. Res. 20: 64–68.
  20. Haddon B.D., 1988. Forest Inventory terms in Canada. 3rd ed., For. Can., Petawawa Nat. For. Inst., Chalk River, ON.
  21. Hägglund B., 1981. Evaluation of forest site productivity. For. Abstr. 42: 515–527.
  22. Hogg E.H., Brandt J.P., and Kochtubajda B., 2002. Growth and dieback of aspen forests in northwestern Alberta, Canada, in relation to climate and insects. Can. J. For. Res. 32: 823–832 [CrossRef].
  23. Hosmer D.W., Hosmer T., Le Cessie S., and Lemeshow S., 1997. A comparison of goodness-of-fit tests for the logistic regression model. Stat. Med. 16: 965–980 [PubMed] [CrossRef].
  24. Hosmer D. and Lemeshow S., 2000. Applied logistic regression. 2nd ed., Wiley, New York.
  25. Jones J., 1969. Review and comparison of site evaluation methods. USDA For. Serv. Res. Pap. RM-51.
  26. Ker J.W., 1952. An evaluation of several methods of estimating site index of immature stands. For. Chron. 28: 63–74.
  27. Lin J., Harcombe P.A., and Fulton M.R., 2001. Characterizing shade tolerance by the relationship between mortality and growth in tree saplings in a southeastern Texas forest. Can. J. For. Res. 31: 345–349 [CrossRef].
  28. MacLean D.A., 1984. Effects of spruce budworm outbreaks on the productivity and stability of balsam fir forests. For. Chron. 60: 273–279.
  29. MacLean D.A. and Ostaff D.P., 1989. Patterns of balsam fir mortality caused by an uncontrolled spruce budworm outbreak. Can. J. For. Res. 19: 1087–1095 [CrossRef].
  30. Magnussen S., 1999. Effect of plot size on top height in Douglas-fir. West. J. Appl. For. 14: 17–27.
  31. Mailly D., Turbis S., Auger I., and Pothier D., 2004. The influence of site tree selection method on site index determination and yield prediction in black spruce stands in northeastern Québec. For. Chron. 80: 134–140.
  32. Ministère des Ressources naturelles du Québec, 2001. Normes d'inventaire forestier: les placettes-échantillons permanentes. Direction des inventaires forestiers, Forêt-Québec, Ministère des Ressources naturelles, 248 p.
  33. Nigh G.D. and Love B.A., 1999. How well can we select undamaged site trees for estimating site index? Can. J. For. Res. 29: 1989–1992.
  34. Pothier D. and Mailly D., 2006. Stand-level prediction of balsam fir mortality in relation to spruce budworm defoliation. Can. J. For. Res. 36: 1631–1640 [CrossRef].
  35. Raulier F., Lambert M.C., Pothier D., and Ung C.H., 2003. Impact of dominant tree dynamics on site index curves. For. Ecol. Manage. 184: 65–78 [CrossRef].
  36. Robitaille A. and Saucier J.-P., 1998. Paysages régionaux du Québec méridional. Les Publications du Québec, Sainte-Foy, 213 p.
  37. Rose C.E. Jr., Hall D.B., Shiver B.D., Clutter M.L., and Borders B., 2006. A Multilevel Approach to Individual Tree Survival Prediction. For. Sci. 52 :31–43.
  38. Ryan M.G., Phillips N., and Bond B.J., 2006. The hydraulic limitation hypothesis revisited. Plant, Cell Environ. 29: 367–381.
  39. Saveland J.M. and Neuenschwander L.F., 1990. A signal detection framework to evaluate models of tree mortality following fire damage. For. Sci. 36: 66–76.
  40. Skovsgaard J.P. and Vanclay J.K., 2007. Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry Advance Access published November 22, 2007, pp. 1–19,
  41. Staebler G.R., 1948. Use of dominant tree heights in determining site index for Douglas-fir. PNW Old Series For. Res. Notes 44: 1–3.
  42. Sterba H. and Amateis R.L., 1998. Crown efficiency in a loblolly pine (Pinus taeda) spacing experiment. Can. J. For. Res. 28: 1344–1351 [CrossRef].
  43. Waring R.H., 1987. Characteristics of trees predisposed to die. Bioscience. 37: 569–574 [CrossRef].
  44. Zeide B. and Zakrzewski W.T., 1993. Selection of site trees: the combined method and its application. Can. J. For. Res. 23: 1019–1025 [CrossRef].
  45. Zeide B., 1981. Concepts of modelling: interpolation versus extrapolation. In: Applied Modelling and Simulation. Vol. 4, Association mondiale des sciences de l'éducation, Tassin-la-Demi-Lune, France, pp. 175–180.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.