Free access
Issue
Ann. For. Sci.
Volume 62, Number 7, November 2005
Page(s) 707 - 716
DOI http://dx.doi.org/10.1051/forest:2005067
References of Ann. For. Sci. 62 707-716
  1. Åkerholm M., Salmén L., Interactions between wood polymers studied by dynamic FT-IR spectroscopy, Polymer 42 (2001) 963-969 [CrossRef].
  2. Åkerholm M., Salmén L., The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy, Holzforschung 57 (2003) 459-465 [CrossRef].
  3. Bardet S., Gril J., Modelling the transverse viscoelasticity of green wood using a combination of two parabolic elements, C.R. Mécanique 330 (2002) 549-556.
  4. Dwianto W., Morooka T., Norimoto M., Kitajima T., Stress relaxation of sugi (Cryptomeria japonica D. Don) wood in radial compression under high temperature steam, Holzforschung 53 (1999) 541-546 [CrossRef].
  5. Dwianto W., Morooka T., Norimoto M., Compressive creep of wood under high temperature steam, Holzforschung 54 (2000) 104-108 [CrossRef].
  6. Ebrahimzadeh P.R., Kubat D.G., Effects of humidity changes on damping and stress relaxation in wood, J. Mater. Sci. 28 (1993) 5668-5674 [CrossRef].
  7. Genevaux J.-M., Le fluage à température linéairement croissante: caractérisation des sources de viscoélasticité anisotrope du bois, Thèse de Doctorat de l'Institut Nationnal Polytechnique de Lorraine, Nancy, France, 1989.
  8. Göring D.A.I., Thermal softening of lignin, hemicellulose and cellulose, Pulp Pap. Mag. Can. 64 (1963) T517-T527.
  9. Gril J., Berrada E., Thibaut B., Recouvrance hygrothermique du bois vert. II. Variations dans le plan transverse chez le châtaignier et l'épicéa et modélisation de la fissuration à coeur provoquée par l'étuvage, Ann. Sci. For. 50 (1993) 487-508.
  10. Guitard D., Mécanique du matériau bois et composites, Cepadues éditions, Toulouse, 1987.
  11. Hanhijärvi A., Deformation properties of Finnish spruce and pine wood in tangential and radial directions in association to high temperature drying. Part II. Experimental results under constant conditions (viscoelastic creep), Holz Roh- Werkst. 57 (1999) 365-372 [CrossRef].
  12. Irvine G.M., The glass transitions of lignin and hemicellulose and their measurements by differential thermal analysis, TAPPI J. 67 (1984) 118-121.
  13. Kelley S.S., Rials T.G., Glasser W.G., Relaxation behaviour of the amorphous components of wood, J. Mater. Sci. 22 (1987) 617-624 [CrossRef].
  14. Kollmann F.P., Côté W.A., Principles of Wood Science and Technology, Vol. 1, Solid Wood, Springer-Verlag, 1968.
  15. Le Govic C., Hadjhamou A., Rouger F., Felix B., Modélisation du fluage du bois sur la base d'une équivalence Temps-Température, Actes du 2e colloque Sciences et Industries du bois, A.R.B.O.L.O.R. Nancy, France, 1988, pp. 349-356
  16. Maeda H., Fukada E., Effect of bound water on piezoelectric, dielectric and elastic properties of wood, J. Appl. Polym. Sci. 33 (1987) 1187-1198 [CrossRef].
  17. Olsson A.-M., Salmén L., Viscoelasticity of in situ lignin as affected by structure, softwood vs. hardwood, ACS Symposium Series No. 489, Am. Chem. Soc., 1992, pp. 133-143.
  18. Ostberg G., Salmen L., Terlecki J., Softening temperature of moist wood measured by differential scanning calorimetry, Holzforschung 44 (1990) 223-225.
  19. Passard J., Perré P., Creep tests under water-saturated conditions: do the anisotropy ratios of wood change with the temperature and time dependency ? 7th International IUFRO Wood Drying Conference, Tokyo, Japan, 2001, pp. 230-237.
  20. Perré P., Aguiar O., Fluage du bois "vert" à haute température (120 °C) : expérimentation et modélisation à l'aide d'éléments de Kelvin thermo-activés, Ann. For. Sci. 56 (1999) 403-416.
  21. Ranta-Maunus A., The viscoelasticity of wood at varying moisture content, Wood Sci. Technol. 9 (1975) 189-205 [CrossRef].
  22. Salmen L., Viscoelastic properties of in situ lignin under water-saturated conditions, J. Mater. Sci. 19 (1984) 3090-3096 [CrossRef].
  23. Schniewind A.P., Recent progress in the study of the rheology of wood, Wood Sci. Technol. 2 (1968) 188-206.
  24. Schniewind A.P., Barrett J.D., Wood as linear orthotropic viscoelastic material, Wood Sci. Technol. 6 (1972) 43-57 [CrossRef].
  25. Swensson S., Toratti T., Mechanical response of wood perpendicular to grain when subjected to changes of humidity, Wood Sci. Technol. 36 (2002) 145-156 [CrossRef].
  26. Timoshenko S.P., Résistance des matériaux, Bordas, Paris, France, 1968.
  27. Tsujiyama S., Miyamori A., Assignment of DSC thermograms of wood and its components, Thermochim. Acta 351 (2000) 177-181 [CrossRef].
  28. Wheeler E.A., Baas P., Gasson P.E., IAWA list of microscopic features for hardwood identification, IAWA Bull. 10 (1989) 219-332.