Free access
Issue
Ann. For. Sci.
Volume 63, Number 2, March 2006
Page(s) 213 - 229
DOI http://dx.doi.org/10.1051/forest:2005113
Published online 23 February 2006
References of Ann. For. Sci. 63 213-229
  1. Alves S.S., Figueirido J.L., Kinetics of cellulose pyrolysis modelled by three consecutive first-order reactions, J. Anal. Appl. Pyrolysis 17 (1989) 37-46.
  2. Antal M.J., Varhegyi G., Cellulose pyrolisis kinetics: the current state of knowledge, Industrial and Engineering Chemistry 34 (1995) 703-717.
  3. Antal M.J., Varhegyi G., Jakab E., Cellulose pyrolisis kinetics: revisited, Ind. Eng. Chem. Res. 37 (1998) 1267-1275 [CrossRef].
  4. Avat F., Contribution à l'étude des traitements thermiques du bois (20-300 C) : transformations chimiques et caractérisations physico-chimiques, École Nationale Supérieure des Mines de Saint-Étienne, Saint-Étienne, 1993, p. 237.
  5. Baumberger S., Dole P., Lapierre C., Using transgenic poplars to elucidate the relationship between the structure and the thermal properties of lignins, J. Agric. Food Chem. 50 (2002) 2450-2453 [CrossRef] [PubMed].
  6. Baumberger S., et al., Lignines et environnement : de la préservation du bois à l'élaboration de plastiques biodégradables, Les rencontres de l'INA, 9 et 10 avril, 2002, Grignon.
  7. Beall F.C., Differentiel calometric analysis of wood and wood components. Wood Sci. Technol. 5 (1971) 159-175.
  8. Beall F.C., Eickner H.W., Thermal degradation of wood components: a review of the literature. FPL Research Paper No. 130, USDA Forest Products Laboratory, 1970.
  9. Bilbao R., Millera A., Arauzo J., Kinetics of weight loss by thermal decomposition of xylan and lignin. Influence of experimental conditions. Thermochim. Acta 143 (1989) 137-148.
  10. Blazek J., et al., Study of the thermical degradation of lignin in the inert atmosphere, Entropie 235/236 (2001) 6-11.
  11. Bonhke I., Étude expérimentale et théorique des traitements thermiques du bois. Caractérisation physico-mécanique des bois traités, École Nationale Supérieure des Mines de Saint-Étienne, Saint-Étienne (1993) 205.
  12. Bourgois J., Bartholin M.C., G. R, Thermal treatment of wood: analysis of the obtained product, Wood Sci. Technol. 23 (1989) 303-310 [CrossRef].
  13. Bradbury A.G.W., Sakai Y., Shafizadeh F., A kinetic model for pyrolysis of cellulose, Combust. Sci. Technol. 23 1979) 3271-3280.
  14. BRE-CT-5006 E.B., Upgrading of non durable wood species by appropriate pyrolysis thermal treatment, EC-Industrial & Materials Technologies Programme (Brite-EuRam III), 1998, p. 17.
  15. Broido A., Weinstein M., Low temperature isothermal pyrolysis of cellulose, Combust. Sci. Technol. 3 (1971) 285-296.
  16. Chornet E., Roy C., Compensation effect in the thermal decomposition of cellulosic materials, Thermochim. Acta 42 (1980) 389-393 [CrossRef].
  17. Cozzani V., et al., A new method to determine the composition of biomass by thermogravimetric analysis, Can. J. Chem. Eng. 75 (1997) 127-133.
  18. Di Blasi C., Lanzetta M., Intrinsic kinetics of isothermal xylan degradation in inert atmosphere, J. Anal. Appl. Pyrolysis 40-41 (1997) 287-303.
  19. Dirol D., Guyonnet R., The improvement of wood durability by retification process, in: 24th Annual meeting from the International Research Group on Wood Preservation, Orlando-USA, 1993.
  20. Felfli F., Luengo C., Beaton P., A numerical model for biomass torrefaction, in: European conference, 10th, Wurzburg, Germany, 1998.
  21. Fisher T., et al., Pyrolysis behavior and kinetics of biomass derived materials, J. Anal. Appl. Pyrolysis 62 (2002) 331-349.
  22. Florentin G.H., Research priorities for construction timber and wood from now until 2005. - Quelles priorités pour la recherche sur le bois dans la construction d'ici 2005 ? CTBA Info 99 (2003) 17-20.
  23. Gronli M.G., A theorical and experimental study of the thermal degradation of biomass pyrolysis, wood, tar, char, Univ. 1 Trondheim, Trondheim, 1996, p. 342.
  24. Jakab E., Faix O., Till F., Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry, J. Anal. Appl. Pyrolysis, 40-41 (1997) 171-186.
  25. Jakab E., et al., Thermogravimetry/mass spectrometry study of 6 lignins within the scope of an international round robin test, J. Anal. Appl. Pyrolysis 35 (1995) 167-179.
  26. Kamdem D., Pizzi A., Jermannaud A., Durability of heat-treated wood. Holz Roh Werkst. 60 (2002) 1-6.
  27. Kollmann F., Topf P., Exothermic reactions of wood at elevated temperatures, J. Fire Flammability 2 (1971) 231-239.
  28. Kotilainen R., Alen R., Arpiainen V., Changes in the chemical composition of Norway spruce (Picea abies) at 160-260 °C under nitrogen and air atmospheres, Paperi ja Puu/Paper Timber, 81 (1999) 384-388.
  29. Kotilanen R., Chemical changes in wood during heating at 150-260 °C, in Department of Chemistry, University of Jyväskylä, Finland, 2000, p. 51.
  30. Koufopanos C.A., Mashio G., Lucchesi A., Kinetic modelling of the pyrolysis of biomass and biomass component, Can. J. Chem. Eng. 67 (1989) 75-84.
  31. Kung H.C., Kalelkar A.S., On the heat of reaction in wood pyrolysis, Combust. Flame 20 (1973) 91-103.
  32. Labat J., Castera P., Guyonnet R., Étude de caractérisation du pin maritime rétifié, Journées Techniques de la Chambre de Commerce et d'Industrie des Landes, DRIRE Aquitaine, Direction Régionale de l'Agriculture et de la Forêt, Soustons, 2000, p. 25.
  33. Militz H., Tjeerdsma B., Heat treatment of wood by the PLATO-process, SHR timber research Universitat gottingen, Wageningen, Netherland Gottingen, Germany, 2000, p. 10.
  34. Milosavljevic I., Suuberg E.M., Cellulose thermal decomposition kinetics: Global mass loss kinetics, Ind. Eng. Chem. Res. 35 (1995) 653-662 [CrossRef].
  35. Mouras S., et al., Physical properties of non durable woods with a low temperature pyrolysis treatment. Propriétés physiques de bois peu durables soumis à un traitement de pyrolyse ménagée, Ann. For. Sci. 59 (2002) 317-326 [EDP Sciences] [CrossRef].
  36. Nunn T.R., et al., Products compositions and kinetics in the rapid pyrolysis of sweet gum hardwood. Industrial & Engineering Chemistry, Process Design Dev. 24 (1985) 836-844.
  37. Orfão J.J.M., Figueiredo J.L., A simplified method for determination of lignocellulosic materials pyrolysis kinetics from isothermal thermogravimetric experiments, Thermochim. Acta 380 (2001) 67-78 [CrossRef].
  38. Pavlath A.E., Gregorski K.S., Thermoanalytical studies of carbohydrate pyrolysis, in: Poverend R., Milne T.A., Mudge L.K. (Eds.), Fundementals of thermochemical Biomass Conversion, Elsevier Applied Science, London, 1985.
  39. Perré P., Turner I.W., The use of macroscopic equations to simulate heat and mass transfer in porous media, in: Turner I.W., Mujumdar A.S. (Eds.), Mathematical modeling and numerical techniques in drying technology, M. Dekker, 1996.
  40. Rahjohnson J.R., Guyonnet R., Guilhot B., Experimental study and modelling of the wood retification process, in: Bimbenet J.J., Dumoulin E., Trystam G. (Eds.), Automatic Control of Food and Biological Process, Elsevier science B.V., 1994, pp. 227-235.
  41. Ramiah M.V., Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin, J. Appl. Polym. Sci. 14 (1970) 1323-1337 [CrossRef].
  42. Rapp A.O., sailer M., heat treatment of wood in Germany - state of the art, Bundesforschungsanstalt fur Forst-und Holzwirtschaft, Hamburg, 2000, p. 15.
  43. Rath J., et al., Heat of wood pyrolysis, Fuel Guildford, 82 (2003) 81-91.
  44. Roberts A.F., The heat of reaction during the pyrolysis of wood, Combust. Flame 17 (1971) 79-86 [CrossRef].
  45. Rousset P., Optimisation des paramètres de process pour l'amélioration de la durabilité des bois par traitement thermique, CNAM Languedoc Roussillon, Montpellier, 1998, p. 65.
  46. Santos Antonio J., Mechanical behavior of eucalyptus wood modified by heat, Wood Sci. Technol. 34 (2000) 39-43 [CrossRef].
  47. Sefain M.Z., El-Kalyoubi S.F., Shukry N., Thermal behavior of holo and hemicellulose obtained from rice straw and bagasse, J. Polym. Sci. 23 (1985) 1569-1577.
  48. Shafizadeh F., Bradbury A.G.W., Thermal degradation of cellulose in Air and Nitrogen at low temperature, J. Appl. Polym. Sci. 23 (1979) 1431-1441 [CrossRef].
  49. Shafizadeh F., McGinnis, chemical composition and thermal analysis of cottonwood, Carbohydr. Res. 16 (1971) 273-277 [CrossRef].
  50. Simmons G.M., Gentry M., Particule size limitations due to heat transfert in determining pyrolysis kinetics of biomass, J. Anal. Appl. Pyrolysis 10 (1986) 117-127.
  51. Sivonen H., et al., Magnetic resonance studies of thermally modified wood, Holzforschung 56 (2002) 648-654 [CrossRef].
  52. Sjostrom E., Wood Chemistry: Fundamentals and Applications, San Diego: Academic Press, Inc., 1993.
  53. Stamm A.J., Wood and cellulose science, Indus. Eng. Chem. (1956) 48.
  54. Syrjanen T., Jamsa S., Viitaniemi P., heat treatment of wood in Finland - state of the art, technical research centre of Finland building technology: espoo, 2000, p. 12.
  55. Tang W.K., Effect of Inorganic Salts on Pyrolisis of Wood, Alpha-Cellulose and Lignine, FPL Research Paper No. 71, USDA Forest Products Laboratory, 1967.
  56. Tang W.K., Neill W.K., Effect of flame retardants on pyrolysis and combustion of alpha-cellulose, J. Polym. Sci. 6 (1964) 65-81.
  57. Tinney E.R., The combustion of wooden dowels in heated air, in: Tenth Intern. Symp. on combustion, 1965.
  58. Tjeerdsma B., et al., Characterisation of thermally modified wood: molecular reasons for wood performance improvement, Holz Roh Werkst. 56 (1998) 149-153 [CrossRef].
  59. Turner I.W., Perré P., A synopsis of the strategies and efficient resolution techniques used for modelling and numerically simulating the drying process, in: Turner I.W., Mujumbar A.S. (Eds.), Numerical methods and mathematical modelling of the drying process, M. Dekker, 1996, p. 1-82.
  60. Van der Hage E.R.E., Mulder M.M., Boon J.J., Structural characterization of lignin polymers by temperature resolved in source pyrolisis mass spectrometry and curie point pyrolisis gas chromatography/mass spectrometry, J. Anal. Appl. Pyrolysis 25 (1993) 149-183.
  61. Varhegyi G., et al., Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugar cane bagasse, Energy Fuel 3 (1989) 329-335.
  62. Varhegyi G., Jakab E., Antal M.J., Is the Broido-Shafizadeh model for cellulose pyrolysis is true? Energy Fuel 8 (1994) 1335-1352.
  63. Vernois M., heat treatmaent of wood in France - state of the art, Centre Technique du Bois et de l'Ameublement: Paris, 2000, p. 5.
  64. Ward S.M., Braslaw J., Experimental weight loss kinetics of wood pyrolysis under vacuum. Combust. Flame 61 (1986) 261-269.
  65. Williams P.T., Besler S., Thermogravimetric analysis of the component of biomass, in: Bridgewater A.V. (Ed.), Advances in thermochimical biomass conversion, Blackie Academic & Professional: London, 1994.
  66. Zaman A., Alen R., Kotilanen R., Thermal behavior of scots pine (pinus sylvestris) and silver birch (Betula pendule) at 200-230 °C, Wood Fiber sci. 32 (2000) 138-143.
  67. Zaror C.A. Pyle D.L., Competitive reactions model for the pyrolysis of lignocellulose: a critical study, J. Anal. Appl. Pyrolysis 10 (1986) 1-12.
  68. Zeriouh A., Belkbir L., Étude dilatométrique de la pyrolyse du xylane en régime non isotherme, Thermochim. Acta 351 (2000) 171-175 [CrossRef].
  69. Zsako J., The kinetic compensation effect, J. Therm. Anal. 9 (1976) 101-108.