Free access
Ann. For. Sci.
Volume 66, Number 1, January-February 2009
Article Number 102
Number of page(s) 11
Published online 14 January 2009
References of  Ann. For. Sci. 66 (2009) 102
  1. Amponsah I.G., Lieffers V.J., Comeau P.G., and Landhäusser S.M., 2004. Nitrogen-15 uptake by Pinus contorta seedlings in relation to phenological stage and season. Scand. J. For. Res. 19: 329–338 [CrossRef].
  2. Armstrong W., Brandle R., and Jackson M.B., 1994. Mechanisms of flood tolerance in plants. Acta. Bot. Neerl. 43: 307–358.
  3. Armstrong J., Armstrong W., Beckett P.M., Halder J.E., Lythe S., Holt R., and Sinclair A., 1996a. Pathways of aeration and the mechanisms and beneficial effects of humidity and venturi-induced convections in Phragmites australis. Aquat. Bot. 54: 177–197 [CrossRef].
  4. Armstrong J., Armstrong W., and Van Der Putten W.H., 1996b. Phragmites die-back: bud and root death, blockage within the aeration and vascular systems and the possible role of phytotoxins. New Phytol. 133: 399–414 [CrossRef].
  5. Armstrong W., Armstrong J., and Beckett P.M., 1996c. Pressurized aeration in wetland macrophytes: some theoretical aspects of humidity-induced convection and thermal transpiration. Folia Geobot. Phytotax. 31: 25–36 [CrossRef].
  6. Astridge K., 1996. The relationship between microhabitat variation and performance of Picea mariana and Larix laricina seedlings in a rich fen. M.Sc. thesis, University of Alberta, Edmonton, Canada, 69 p.
  7. Bassirirad H., Griffin K.L., Reynolds J.F., and Strain B.R., 1997. Changes in root NH4+ and NO3- absorption rates of loblolly and ponderosa pine in response to CO2 enrichment. Plant Soil 190: 1–9 [CrossRef].
  8. Binkley D., Sollins P., and McGill W.B., 1985. Natural abundance of nitrogen-15 as a tool for tracing alder-fixed nitrogen. Soil Sci. Soc. Am. J. 49: 444–447.
  9. Bonan G.B. and Shugart H.H., 1989. Environmental factors and ecosystem processes in boreal forests. Annu. Rev. Ecol. Syst. 20: 1–28 [CrossRef].
  10. Buchmann N., Schulze E.-D., Gebauer G., 1995. 15N-ammonium and 15N-nitrate uptake of a 15-year-old Picea abies plantation. Oecologia 102: 361–370 [CrossRef].
  11. Caemmerer S.V. and Farquhar G.D., 1981. Some relationship between biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376–387 [CrossRef].
  12. Campbell T.A., 1980. Oxygen flux measurements in organic soils. Can. J. Soil Sci. 60: 641–650 [CrossRef].
  13. Chapin F.S.III., Bloom A.J., Field C.B., and Waring R.H., 1987. Plant responses to multiple environmental stresses. BioScience 37: 49–56 [CrossRef].
  14. Conlin T.S.S. and Lieffers V.J., 1993. Anaerobic and aerobic efflux rates from boreal forest conifer roots at low temperature. Can. J. For. Res. 23: 767–771 [CrossRef].
  15. Dang Q.L., Lieffers V.J., Rothwell R.L., and Macdonald S.E., 1991. Diurnal variations and interrelations of ecophysiological parameters in peatland black spruce, tamarack, and swamp birch under different weather and soil moisture conditions. Oecologia 88: 317–324 [CrossRef].
  16. DeLucia E.H. and Schlesinger W.H., 1995. Photosynthetic rates and nutrient-use efficiency among evergreen and deciduous shrubs in Okefenokee swamp. Int. J. Plant Sci.156: 19–28.
  17. DeLaune R.D., Pezeshki S.R., and Lindau C.W., 1998. Influence of soil redox potential on nitrogen uptake and growth of wetland oak seedlings. J. Plant Nutr. 21: 757–768 [CrossRef].
  18. DeLaune R.D., Jugsujinda A., and Reddy K.R., 1999. Effect of root oxygen stress on phosphorus uptake by cattail. J. Plant Nutr. 22: 459–466 [CrossRef].
  19. Hangs R.D., Knight J.D., and Van Rees K.C.J., 2003. Nitrogen uptake characteristics for roots of conifer seedlings and common boreal forest competitor species. Can. J. For. Res. 33: 156–163 [CrossRef].
  20. Hauck R. D., Meisinger J. J., and Mulvancy R. L., 1994. Practical consideration in the use of nitrogen tracers in agricultural and environmental research. In: Weaver et al., (Eds.), Methods of soil analysis. Part 2. SSSA Book Ser. 5. Madison, WI, USA, pp. 907–950.
  21. Islam M.A. and Macdonald S.E., 2004. Ecophysiological adaptations of black spruce (Picea mariana) and tamarack (Larix laricina) seedlings to flooding. Trees 18: 35–42.
  22. Islam M.A., Macdonald S.E., and Zwiazek J.J., 2003. Responses of black spruce (Picea mariana) and tamarack (Larix laricina) to flooding and ethylene. Tree Physiol. 23: 545–552 [PubMed].
  23. Knowles R. and Lefebvre J., 1972. Field, greenhouse and laboratory studies on the transformation of 15N-labeled urea in a boreal forest black spruce system. In: Isotopes and radiation in soil-plant relationship influencing forestry. IAEA, Vienna, pp. 349–358.
  24. Kozlowski T.T., 1984. Plant responses to flooding of soil. BioScience 34: 162–169 [CrossRef].
  25. Kronzucher H.J., Siddiqi M.Y., and Glass A.D.M., 1995a. Compartmentation and flux characteristics of nitrate in spruce. Planta 196: 674–682 [CrossRef].
  26. Kronzucher H.J., Siddiqi M.Y., and Glass A.D.M., 1995b. Kinetics of NO3- influx in spruce. Plant Physiol. 109: 319–326 [PubMed].
  27. Kronzucher H.J., Siddiqi M.Y., and Glass A.D.M., 1996. Kinetics of NH4+ influx in spruce. Plant Physiol. 110: 773–779 [PubMed].
  28. Kronzucher H.J., Siddiqi M.Y., and Glass A.D.M., 1997. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385: 59–61 [CrossRef].
  29. Lieffers V.J. and Macdonald S.E., 1990. Growth and foliar nutrient status of black spruce and tamarack in relation to depth of water table in some Alberta peatlands. Can. J. For. Res. 20: 805–809 [CrossRef].
  30. Macdonald S.E. and Lieffers V.J., 1990. Photosynthesis, water relations, and foliar nitrogen Picea mariana and Larix laricina from drained and undrained peatlands. Can. J. For. Res. 20: 995–1000 [CrossRef].
  31. Macdonald S.E. and Yin F.Y., 1999. Factors influencing size inequality in peatland black spruce and tamarack: Evidence from post-drainage release growth. J. Ecol. 87: 404–412 [CrossRef].
  32. Malagoli M., Canal A.D., Quaggiotti S., Pegoraro P., and Bottacin A., 2000. Differences in nitrate and ammonium uptake between Scots pine and European larch. Plant Soil 221: 1–3 [CrossRef].
  33. Mannerkoski H., 1985. Effect of water table fluctuation on the ecology of peat soil. Publication from the Department of Peatland Forestry, University of Helsinki 7, Helsinki, p. 190.
  34. Marschner H., Häussling M., and Eckhard G. 1991. Ammonium and nitrate uptake rate and rhizosphere pH in non-mycorrhizal roots of Norway spruce [Picea abies (L.) Karst.]. Trees 5: 14–21.
  35. Mead D.J. and Preston C.M., 1994. Distribution and retranslocation of 15N in lodgepole pine over eight growing seasons. Tree Physiol. 14: 389–402 [PubMed].
  36. Miller B.D. and Hawkins B.J., 2003. Nitrogen uptake and utilization by slow and fast-growing families of interior spruce under contrasting fertility regimes Can. J. For. Res. 33: 959–966.
  37. Mugasha A.G., Pluth D.J., and Hillman G.R. 1993. Foliar responses of tamarack and black spruce to drainage and fertilization of a minerotrophic peatland. Can. J. For. Res. 23: 166–180.
  38. Mugasha A.G. and Pluth D.J., 1994. Distribution and recovery of 15N-urea in a tamarack/black spruce mixed stand on a drained minerotrophic peatland. For. Ecol. Manage 68: 353–363 [CrossRef].
  39. Nômmik H., 1990. Appilication of 15N as a tracer in studying fertilizer nitrogen transformations and recovery in coniferous ecosystems. In: Nutrient cycling in terrestrial ecosystems: Field methods, application and interpretation. Harrison A.F., Ineson P., and Heal O.W. (Eds.), Elsevier Applied. Science, NY, USA. pp. 277–291.
  40. Nômmik H. and Larson K., 1989. Assessment of fertilizer nitrogen accumulation in Pinus sylvestris trees and retention in soil by 15N recovery techniques. Scan. J. For. Res. 4: 427–442 [CrossRef].
  41. Oaks A. and Hirel B., 1985. Nitrogen metabolism in roots. Ann. Rev. Plant Physiol. 36: 345–365.
  42. Pate J.S., 1983. Patterns of nitrogen metabolism in higher plants and their ecological significance. In: Nitrogen as an Ecological Factor. Lee J.A., McNeill S., and Rorison I.H. (Eds.), The 22nd Symposium of the British Ecological Society. Oxford, UK, 1981, pp. 225–255.
  43. Ponnamperuma F.N., 1972. The chemistry of submerged soil. Adv. Agron. 24: 29–96.
  44. Preston C.M. and Mead D.J., 1994. Growth response and recovery of 15N-fertilizer one and eight growing season after application to lodgepole pine in British Columbia. For. Ecol. Manage. 65: 219–229 [CrossRef].
  45. Raven P.H., Evert R.F., and Eichhorn S.E., 1992. Biology of Plants. 5th ed. Edition, Worth Publishers, NY, 610 p.
  46. Salifu K.F., Apostol K.G., Jacobs D.F., and Islam M.A., 2008. Growth, physiology, and nutrient retranslocation in nitrogen-15 fertilized Quercus rubra seedlings. Ann. For. Sci. 65: 101 [EDP Sciences] [CrossRef].
  47. Salifu K.F. and Timmer V.R., 2003. Nitrogen retranslocation response of young Picea mariana to Nitrogen-15 supply. Soil Sci. Am. J. 67: 309–317.
  48. Tyrrell L.E. and Boerner R.E., 1987. Larix laricina and Picea mariana: relationships among leaf life-span, foliar nutrient patterns, nutrient conversions, and growth efficiency. Can. J. Bot. 65: 1570–1577 [CrossRef].
  49. Van Cleve K. and Alexander V., 1981. Nitrogen cycling in tundra and boreal ecosystems. Ecol. Bull. 33: 375–404.
  50. Wanyancha J.M. and Morgenstern E.K., 1985. Genetic variation in nitrogen concentration, accumulation and utilization efficiency in 20 Larix laricina families. In: 29th Northeastern Forest Tree Improvement Conference. Morgantown, WV, USA,