Open Access
Ann. For. Sci.
Volume 66, Number 3, April-May 2009
Article Number 303
Number of page(s) 12
Published online 07 April 2009
References of  Ann. For. Sci. 66 (2009) 303
  1. Bardgett R.D., Hobbs P.J., and Frostegård Å., 1996. Changes in fungal: bacterial biomass ratios following reductions in the intensity of management on an upland grassland. Biol. Fertil. Soils 22: 261–264 [CrossRef].
  2. Bauhus J, Khanna P.K., Hopmans P., and Weston C., 2002. Is soil carbon a useful indicator of sustainable forest soil management?-a case study from native eucalypt forests of south-eastern Australia. For. Ecol. Manage. 171: 59–74 [CrossRef].
  3. Benjamin J.G., Nielsen D.C., and Vigil M.F., 2003. Quantifying effects of soil conditions on plant growth and crop production. Geoderma 116: 137–148 [CrossRef].
  4. Cambardella C.A. and Elliot E.T., 1992. Particulate soil organic matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 56: 777–783.
  5. Chan K.Y., Oates A., Swan A.D., Hayes R.C., Dear B.S., and Peoples M.B., 2006. Agronomic consequences of tractor wheel compaction on a clay soil. Soil Tillage Res. 89: 13–21 [CrossRef].
  6. Clarholm M., 1993. Microbial biomass P, labile P, and acid phosphatase activity in the humus layer of a spruce forest, after repeated additions of fertilizers. Biol. Fertil. Soils 16: 287–292 [CrossRef].
  7. Dale V.H., Peacock A.D., Garten Jr. C.T., Sobek E., and Wolfe A.K., 2008. Selecting indicators of soil, microbial, and plant conditions to understand ecological changes in Georgia pine forests. Ecol. Indic. 8: 818–827 [CrossRef].
  8. Da Silva A.P. and Kay B.D., 1997. Effect of soil water content on the variation in the least limiting water range. Soil Sci. Soc. Am. J. 58: 1775–1781.
  9. Da Silva A.P. and Kay B.D., 2004. Linking process capability analysis and least limiting water range for assessing soil physical quality. Soil Tillage Res. 79: 167–174 [CrossRef].
  10. Dix N.J. and Webster J., 1995. Fungal Ecology. Chapman & Hall, London.
  11. Doran J.W., 2002. Soil health and global sustainability: Translating science into practice. Agric. Ecosyst. Environ. 88: 119–122 [CrossRef].
  12. Doran J.W. and Parkin T.B., 1994. Defining and assessing soil quality. SSSA Special Publication, Madison, Wisconsin, EEUU 35: 3–21.
  13. Federle T.W., 1986. Microbial distribution in soil- new techniques. Perspectives in microbial ecology. Slovene Society for Microbiology, Ljubljana, Slovenia , 493–498.
  14. Frostegard A. and Bååth E., 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22: 59–65 [CrossRef].
  15. Gartzia-Bengoetxea N., 2008. Structure and dynamics of soil organic matter in temperate forest ecosystems: from case studies to landscape level. Ph.D. thesis, NEIKER-Tecnalia. Basque Institute for Agricultural Research and Development, Basque Country, 213 p.
  16. Gattinger A., Ruser R., Schloter M., and Munch J.C., 2002. Microbial community structure varies in different soil zones in a potato field. J. Plant Nutr. Soil Sci. 165: 421–428 [CrossRef].
  17. Godefroid S., Monbaliu D., Massant W., Van der Aa B., De Vos B., Quivy V., and Koedam N., 2007. Effects of soil mechanical treatments combined with bramble and bracken control on the restoration of degraded understory in an ancient beech forest. Ann. For. Sci. 64: 321–331 [EDP Sciences] [CrossRef].
  18. Grable A.R. and Siemer E.G., 1968. Effects of bulk density, aggregate size, and soil water suction on oxygen diffusion, redox potential elongation of corn roots. Soil Sci. Soc. Am. J. 32: 180–186.
  19. Greacen E.L. and Sands R., 1980. Compaction of forest soils: a review. Aust. J. Soil Res. 18: 163–188 [CrossRef].
  20. Hackl E., Pfeffer M., Donat C., Bachmann G., and Zechmeister-Boltenstern S., 2005. Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biol. Biochem. 37: 661–671 [CrossRef].
  21. Haise H.R., Haas H.J., and Jensen L.R., 1955. Soil moisture studies of some great plain soils. II. Field capacity as related to 1/3 atmosphere percentage, and “minimum point” as related to 15- and 26-atmosphere percentage. Soil Sci. Soc. Am. J. 34: 20–25.
  22. Hagen-Thorn A., Callesen I., Armolaitis K., and Nihlgård B., 2004. The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. For. Ecol. Manage. 195: 373–384 [CrossRef].
  23. Hassett J.E. and Zak D.R., 2005. Aspen harvest intensity decreases microbial biomass, extracellular enzyme activity, and soil nitrogen cycling. Soil Sci. Soc. Am. J. 69: 227–235.
  24. Lajtha K. and Schlesinger W.H., 1988. The biogeochemistry of phosphorus cycling and phosphorus availability along a desert soil chronosequence. Ecology 69: 24–39 [CrossRef].
  25. Leão T.P., da Silva A.P., Macedo M.C.M., Imhoff S., and Euclides V.P.B., 2006. Least limiting water range: A potential indicator of changes in near-surface soil physical quality after the conversion of Brazilian Savanna into pasture. Soil Tillage Res. 88: 279–285 [CrossRef].
  26. Leckie S.E., Prescott C.E., and Grayston S.J., 2004. Forest floor microbial community response to tree species and fertilization of regenerating coniferous forests. Can. J. For. Res. 34: 1426–1435 [CrossRef].
  27. Margesin R., Labbé D., Schinner F., Greer C., and Whyte L., 2003. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl. Environ. Microbiol. 69: 3085–3092 [PubMed] [CrossRef].
  28. Margesin R., Hämmerle M., and Tscherko D., 2007. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers and incubation time. Microb. Ecol. 53: 259–269 [PubMed] [CrossRef].
  29. Mariani L., Chang S.X., and Kabzems R., 2006. Effects of tree harvesting, forest floor removal, and compaction on soil microbial biomass, microbial respiration and N availability in a boreal aspen forest in British Columbia. Soil Biol. Biochem. 38: 1734–1744 [CrossRef].
  30. Marriott E.E. and Wander M.M., 2006. Total and labile soil organic matter in organic and conventional farming systems. Soil Sci. Soc. Am. J. 70: 950–959 [CrossRef].
  31. Martínez de Arano I., 2001. Estado nutritivo y recomendaciones de fertilización para Pinus radiata. Euskadi Forestal 61: 47–51.
  32. Marx M.C., Wood M., and Jarvis S.C., 2001. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33: 1633–1640 [CrossRef].
  33. McKenzie D.C. and McBratney A.B., 2001. Cotton root growth in a compacted vertisol (grey vertosol) I. Predictionusing strength measurements and `limiting water ranges'. Aust. J. Soil Res. 39: 1157–1168.
  34. MCPFE, 1993. Second Ministerial Conference on the Protection of Forests in Europe. General Declaration. 16–17 June 1993, Helsinki, Finland, 4 p.
  35. Nambiar E.K.S., 1996. Sustained productivity of forests is a continuing challenge to soil science. Soil Sci. Soc. Am. J. 60: 1629–1642.
  36. Olander L.P. and Vitousek P.M., 2000. Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49: 175–190 [CrossRef].
  37. Olsson P.A., 1999. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol. Ecol. 29: 303–310 [CrossRef].
  38. Ranger J., Bonnaud P., Bouriaud O., Gelhaye D., and Picard J.F., 2008. Effects of clear-cutting of a Douglas-fir (Pseudotsuga menziessii (Mirb.) Franco) plantation on chemical soil fertility. Ann. For. Sci. 65: 303.
  39. Richards L.A. and Weaver L.R., 1944. Fifteen atmosphere percentage as related to the permanent wilting point. Soil Sci. 56: 331–339.
  40. Salas A.M., Elliott E.T., Westfall D.G., Cole C.V., and Six J., 2003. The role of particulate organic matter in phosphorous cycling. Soil Sci. Soc. Am. J. 67: 181–189.
  41. Sánchez-Rodríguez F., Rodríguez-Soalleiro R., Español E., López C. A., and Merino A., 2002. Influence of edaphic factors and tree nutritive status on the productivity of Pinus radiata D. Don plantations in northwestern Spain. For. Ecol. Manage. 171: 181–189 [CrossRef].
  42. Sands R., Greacen E.L., and Gerard C.J., 1979. Compaction of sandy soils in radiata pine forests. I A penetrometer study. Aust. J. Soil Res. 17: 101–113 [CrossRef].
  43. Santruckova H., Vrba J., Picek T. and Kopacek J., 2004. Soil biochemical activity and phosphorous transformations and losses from acidified forest soils. Soil Biol. Biochem. 36: 1569–1576 [CrossRef].
  44. Shukla M.K., Lal R., and Ebinger M., 2006. Determinig soil quality indicators by factor analysis. Soil Tillage Res. 87: 194–204 [CrossRef].
  45. Siira-Pietikäinen A., Haimi J., Kanninen A., Pietikäinen J., and Fritze H., 2001. Responses of decomposer community to root-isolation and addition of slash. Soil Biol. Biochem. 33: 1993–2004 [CrossRef].
  46. Sinsabaugh R.L., Saiya-Cork K., Long T., Osgood M.P., Neher D.A., Zak D.R., and Norby R.J., 2003. Soil microbial activity in a Liquidambar plantation unresponsive to CO2-driven increases in primary production. Appl. Soil Ecol. 24: 263–271 [CrossRef].
  47. Smith S.E. and Read D.J., 1997. Mycorhizal Symbiosis. Academic Press, San Diego.
  48. Stevens J.P., 2002. Applied Multivariate Statistics for the Social Sciences, 4th ed., Lawrence Erlbaum Associates, Inc., Mahwah, New Jersey.
  49. Tabachnick B.G. and Fidell L.S., 2001. Using Multivariate Statistics, 4th ed., Allyn and Bacon, Boston, MA, USA.
  50. Tscherko D. and Kandeler E., 1999. Biomonitoring of soils – microbial biomass and enzymatic processes as indicators for environmental change. Bodenkultur 50: 215–226.
  51. Tscherko D., Kandeler E., and Bárdossy A., 2007. Fuzzy classification of soil microbial biomass and enzyme activity in grassland soils. Soil Biol. Biochem. 39: 1799–1808 [CrossRef].
  52. Waldrop M.P., MacColl J.G., and Powers R.F., 2003. Effects of forest postharvest management practices on enzyme activities in decomposing litter. Soil Sci. Soc. Am. J. 67: 1250–1256.
  53. Zou C., Sands R., Buchan G., and Hudson I., 2000. Least limiting water range: a potential indicator of physical quality of forest soil. Aust. J. Soil Res. 38: 947–958 [CrossRef].