Free access
Ann. For. Sci.
Volume 67, Number 7, October-November 2010
Article Number 705
Number of page(s) 8
Published online 19 August 2010
  • Gort J., Zubizarreta Gerendiain A., Peltola H., Pulkkinen P., Routa J., and Jaatinen R., 2009. Differences in fibre properties in Scots pine (Pinus sylvestris L.) genetic entries grown at different spacing and sites. Silva Fenn. 43: 355–368.
  • Haapanen M., and Pöykkö T., 1993. Genetic relationship between growth and quality traits in an 8-year-old half-sib progeny trial of Pinus sylvestris. Scan. J. For. Res. 8: 305–312. [CrossRef]
  • Haapanen M., Velling P., and Annala M.-J., 1997. Progeny trial estimates of genetic parameters for growth and quality traits in Scots pine. Silva Fenn. 31: 3–12.
  • Hannrup B., Ekberg I., and Persson A., 2000. Genetic correlations among wood, growth capacity and stem traits in Pinus silvestris. Scan. J. For. Res. 15: 161–170.
  • Ikonen V., Kellomäki S., and Peltola H., 2009. Sawn timber properties of Scots pine as affected by initial stand density, thinning and pruning: a simulation based approach. Silva Fenn. 43: 411–431.
  • Kang Y.K., Zhang S.Y., and Mansfield S.D., 2004. The effects of initial spacing on wood density, fibre and pulp properties in jack pine (Pinus banksiana Lamb.). Holzforschung 58: 455–463. [CrossRef]
  • Kellomäki S. and Tuimala A., 1981. Puuston tiheyden vaikutus puiden oksikkuuteen taimikko- ja riukuvaiheen männiköissä (in Finnish). [Abstract: Effect of stand density on branchiness of young Scots pines]. Folia For. 478 p.
  • Kellomäki S., and Oker-Blom P., 1983. Canopy structure and light climate in a young Scots pine stand. Silva Fenn. 17: 1–21.
  • Kellomäki S., Ikonen V.-P., Peltola H., and Kolström T., 1999. Modelling the structural growth of Scots pine with implications for wood quality. Ecol. Model. 112: 117–134. [CrossRef]
  • Klein T.W., Defries J.C., and Finkbeiner C.T., 1973. Heritability and genetic correlations: standard error of estimates and sample size. Behav. Genet. 3: 355–364. [CrossRef] [PubMed]
  • Kärki L., 1985. Crop tree ideotypes and harvest index should be the basis of selection in cultivated trees. Foundation of Forest Tree Breeding in Finland, Annual report 1984, pp. 20–23.
  • Laasasenaho J., 1982. Taper curve and volume functions for pine, spruce and birch. Comm. Inst. For. Fenn. 108: 11–108.
  • Mäkinen H., 1999a. Growth, suppression, death, and self-pruning of branches of Scots pine in southern and central Finland. Can. J. For. Res. 29: 585–594. [CrossRef]
  • Mäkinen H., 1999b. Effect of stand density on radial growth of branches of Scots pine in southern and central Finland. Can. J. For. Res. 29: 1216–1224. [CrossRef]
  • Mäkinen, H., and Colin F., 1998. Predicting branch angle and branch diameter of Scots pine from usual tree measurements and stand structural information. Can. J. For. Res. 28: 1686–1696. [CrossRef]
  • Mörling T., 2002. Evaluation of annual ring width and ring density development following fertilisation and thinning of Scots pine. Ann. For. Sci. 59: 29–40. [CrossRef] [EDP Sciences]
  • Peltola H., Gort J., Pulkkinen P., Zubizarreta Gerendiain A., Jouni Karppinen J., and Ikonen V.-P., 2009. Differences in growth and wood density traits in Scots pine (Pinus sylvestris L.) genetic entries grown at different spacing and sites. Silva Fenn. 43: 339–354.
  • Persson B., Persson A., Ståhl E.G., and Karlmats U., 1995. Wood quality of Pinus sylvestris progenies at various spacings. For. Ecol. Manage. 76: 127–138. [CrossRef]
  • Pöykkö T., 1993. Selection criteria in Scots pine breeding with special reference to ideotype. The Foundation for Forest Tree Breeding in Finland, Report 6, 66 p.
  • Pöykkö T., and Velling P., 1993. Inheritance of the narrow-crowned Scots pine E 1101, “Kanerva pine”. Silva Fenn. 27: 219–226.
  • Ståhl E.G., 1988. Transfer effect and variations in basic density and tracheid length of Pinus sylvestris L. populations. Stud. For. Suec. 180, 15 p.
  • Ståhl E.G. and Ericson B., 1991. Inheritance of wood properties. In: M. Giertych and C. Mátyás, (Ed.), Genetics of Scots Pine. Developments in Plant Genetics and Breeding, Vol. 3, Elsevier, Amsterdam, pp. 231–241.
  • Velling P., 1988. The relationships between yield components in the breeding of Scots pine. Academic Diss., Univ. Helsinki, Helsinki. (in Finnish), 59 p.
  • Wang T., Aitken S., Rozenberg P., and Millie F., 2000. Selection for improved growth and wood density in Lodgepole Pine: effects on radial patterns of wood variation. Wood Fiber Sci. 32: 391–403.
  • Wilhelmsson L., Arlinger J., Spångberg K., Lundqvist S.-O., Grahn T., Hedenberg Ö., and Olsson L., 2002. Models for predicting wood properties in stems of Picea abies and Pinus sylvestris in Sweden. Scan. J. For. Res. 17: 330–350. [CrossRef]
  • Zobel B.J. and Talbert J., 1984. Applied forest tree improvement. John Wiley & Sons, New York, 505 p.
  • Zobel B.J. and Van Buijtenen J.P. 1989. Wood variation: Its causes and control. Springer-Verlag, Berlin, Germany, 363 p.
  • Zubizarreta Gerendiain A., Peltola H., Pulkkinen P., and Kellomäki S., 2009. Effects of genetic entry and competition by neighbouring trees on growth and wood properties of cloned Norway spruce (Picea abies). Ann. For. Sci. 66: 806. [CrossRef] [EDP Sciences]
  • Zubizarreta Gerendiain A., Peltola H., Pulkkinen P., Jaatinen R., Pappinen A., and Kellomäki S., 2007. Differences in growth and wood property traits in cloned Norway spruce (Picea abies). Can. J. For. Res. 37: 2600–2611. [CrossRef]