Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Spatial variation in sap flow velocity in semiarid region trees: its impact on stand‐scale transpiration estimates

Tomonori Kume, Kyoichi Otsuki, Sheng Du, Norikazu Yamanaka, Yi‐Long Wang and Guo‐Bin Liu
Hydrological Processes 26 (8) 1161 (2012)
https://doi.org/10.1002/hyp.8205

Effects of water availability on carbon and water exchange in a young ponderosa pine forest: Above- and belowground responses

Nadine K. Ruehr, Jonathan G. Martin and Beverly E. Law
Agricultural and Forest Meteorology 164 136 (2012)
https://doi.org/10.1016/j.agrformet.2012.05.015

Environmental controls on growing-season sap flow density of Quercus serrata Thunb in a temperate deciduous forest of Korea

Nahida Laiju, Dennis Otieno, Eun-Young Jung, et al.
Journal of Ecology and Field Biology 35 (3) 213 (2012)
https://doi.org/10.5141/JEFB.2012.026

Decadal water balance of a temperate Scots pine forest (Pinus sylvestris L.) based on measurements and modelling

B. Gielen, H. Verbeeck, J. Neirynck, D. A. Sampson, F. Vermeiren and I. A. Janssens
Biogeosciences 7 (4) 1247 (2010)
https://doi.org/10.5194/bg-7-1247-2010

Evaluation of sap flow density of Acacia melanoxylon R. Br. (blackwood) trees in overstocked stands in north-western Iberian Peninsula

E. Jiménez, J. A. Vega, P. Pérez-Gorostiaga, T. Fonturbel and C. Fernández
European Journal of Forest Research 129 (1) 61 (2010)
https://doi.org/10.1007/s10342-008-0252-4

Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO2

E. G. Bobich, G. A. Barron-Gafford, K. G. Rascher and R. Murthy
Tree Physiology 30 (7) 866 (2010)
https://doi.org/10.1093/treephys/tpq036

Azimuthal variations of sap flux density within Japanese cypress xylem trunks and their effects on tree transpiration estimates

Kenji Tsuruta, Tomonori Kume, Hikaru Komatsu, et al.
Journal of Forest Research 15 (6) 398 (2010)
https://doi.org/10.1007/s10310-010-0202-0

Variation of transpiration within a canopy of silver birch: effect of canopy position and daily versus nightly water loss

Arne Sellin and Kristina Lubenets
Ecohydrology 3 (4) 467 (2010)
https://doi.org/10.1002/eco.133

Tree transpiration varies spatially in response to atmospheric but not edaphic conditions

Elizabeth Traver, Brent E. Ewers, David S. Mackay and Michael M. Loranty
Functional Ecology 24 (2) 273 (2010)
https://doi.org/10.1111/j.1365-2435.2009.01657.x

Contribution of competition for light to within‐species variability in stomatal conductance

Michael M. Loranty, D. Scott Mackay, Brent E. Ewers, Elizabeth Traver and Eric L. Kruger
Water Resources Research 46 (5) (2010)
https://doi.org/10.1029/2009WR008125

Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO2 concentration

J.-C. Domec, K. Schafer, R. Oren, H. S. Kim and H. R. McCarthy
Tree Physiology 30 (8) 1001 (2010)
https://doi.org/10.1093/treephys/tpq054

On the representativeness of plot size and location for scaling transpiration from trees to a stand

D. Scott Mackay, Brent E. Ewers, Michael M. Loranty and Eric L. Kruger
Journal of Geophysical Research: Biogeosciences 115 (G2) (2010)
https://doi.org/10.1029/2009JG001092

Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long‐term growth in elevated CO2 (free‐air CO2 enrichment) and N‐fertilization

JEAN‐CHRISTOPHE DOMEC, SARI PALMROTH, ERIC WARD, CHRIS A. MAIER, M. THÉRÉZIEN and RAM OREN
Plant, Cell & Environment 32 (11) 1500 (2009)
https://doi.org/10.1111/j.1365-3040.2009.02014.x

Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation

JEAN‐CHRISTOPHE DOMEC, ASKO NOORMETS, JOHN S. KING, GE SUN, STEVEN G. MCNULTY, MICHAEL J. GAVAZZI, JOHNNY L. BOGGS and EMRYS A. TREASURE
Plant, Cell & Environment 32 (8) 980 (2009)
https://doi.org/10.1111/j.1365-3040.2009.01981.x

Decadal water balance of a temperate Scots pine forest (Pinus sylvestris L.) based on measurements and modelling

B. Gielen, J. Neirynck, H. Verbeeck, et al.
Biogeosciences Discussions 6 (6) 10519 (2009)
https://doi.org/10.5194/bgd-6-10519-2009

Applicability of Sap Flux Measurements in Moso Bamboo (Phyllostachys pubescens): Relationship between Water Absorption and Whole-tree Water Use Utilizing Granier Sensor Sap Flux Measurements.

Yuka Onozawa, Tomonori Kume, Hikaru Komatsu, Kenji Tsuruta and Kyoichi Otsuki
Journal of the Japanese Forest Society 91 (5) 366 (2009)
https://doi.org/10.4005/jjfs.91.366

Water flux components and soil water‐atmospheric controls in a temperate pine forest growing in a well‐drained sandy soil

Joshua D. McLaren, M. Altaf Arain, Myroslava Khomik, Matthias Peichl and Jason Brodeur
Journal of Geophysical Research: Biogeosciences 113 (G4) (2008)
https://doi.org/10.1029/2007JG000653

Effects of pre-commercial thinning on transpiration in young post-fire maritime pine stands

E. Jimenez, J. A. Vega, P. Perez-Gorostiaga, et al.
Forestry 81 (4) 543 (2008)
https://doi.org/10.1093/forestry/cpn032

The effect of carbon dioxide enrichment on apparent stem respiration from Pinus taeda L. is confounded by high levels of soil carbon dioxide

David J. P. Moore, Miquel A. Gonzalez-Meler, Lina Taneva, et al.
Oecologia 158 (1) 1 (2008)
https://doi.org/10.1007/s00442-008-1118-7

Environmental drivers of spatial variation in whole‐tree transpiration in an aspen‐dominated upland‐to‐wetland forest gradient

Michael M. Loranty, D. Scott Mackay, Brent E. Ewers, Jonathan D. Adelman and Eric L. Kruger
Water Resources Research 44 (2) (2008)
https://doi.org/10.1029/2007WR006272

Quantitative comparison of canopy conductance models using a Bayesian approach

S. Samanta, M. K. Clayton, D. S. Mackay, E. L. Kruger and B. E. Ewers
Water Resources Research 44 (9) (2008)
https://doi.org/10.1029/2007WR006761

Bayesian analysis for uncertainty estimation of a canopy transpiration model

S. Samanta, D. S. Mackay, M. K. Clayton, E. L. Kruger and B. E. Ewers
Water Resources Research 43 (4) (2007)
https://doi.org/10.1029/2006WR005028

Effects of hydraulic architecture and spatial variation in light on mean stomatal conductance of tree branches and crowns

B. E. EWERS, R. OREN, H.‐S. KIM, G. BOHRER and C.‐T. LAI
Plant, Cell & Environment 30 (4) 483 (2007)
https://doi.org/10.1111/j.1365-3040.2007.01636.x

Leaf‐ and stand‐level responses of a forested mesocosm to independent manipulations of temperature and vapor pressure deficit

Greg A. Barron‐Gafford, Katherine A. Grieve and Ramesh Murthy
New Phytologist 174 (3) 614 (2007)
https://doi.org/10.1111/j.1469-8137.2007.02035.x

A model for simulating transpiration of Eucalyptus salmonophloia trees

Matthias Langensiepen, Stephen Burgess, Hans Lambers, Patrick Mitchell and Erik Veneklaas
Physiologia Plantarum 127 (3) 465 (2006)
https://doi.org/10.1111/j.1399-3054.2006.00727.x

Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductance in xeric and mesic habitats

R. N. ADDINGTON, L. A. DONOVAN, R. J. MITCHELL, J. M. VOSE, S. D. PECOT, S. B. JACK, U. G. HACKE, J. S. SPERRY and R. OREN
Plant, Cell & Environment 29 (4) 535 (2006)
https://doi.org/10.1111/j.1365-3040.2005.01430.x

Sap flux–upscaled canopy transpiration, stomatal conductance, and water use efficiency in an old growth forest in the Great Lakes region of the United States

Jianwu Tang, Paul V. Bolstad, Brent E. Ewers, Ankur R. Desai, Kenneth J. Davis and Eileen V. Carey
Journal of Geophysical Research: Biogeosciences 111 (G2) (2006)
https://doi.org/10.1029/2005JG000083

Estimating the uncertainty in annual net ecosystem carbon exchange: spatial variation in turbulent fluxes and sampling errors in eddy‐covariance measurements

RAM OREN, CHENG‐I HSIEH, PAUL STOY, JOHN ALBERTSON, HEATHER R MCCARTHY, PETER HARRELL and GABRIEL G KATUL
Global Change Biology 12 (5) 883 (2006)
https://doi.org/10.1111/j.1365-2486.2006.01131.x

Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests

B. E. EWERS, S. T. GOWER, B. BOND‐LAMBERTY and C. K. WANG
Plant, Cell & Environment 28 (5) 660 (2005)
https://doi.org/10.1111/j.1365-3040.2005.01312.x

Respiratory carbon losses and the carbon‐use efficiency of a northern hardwood forest, 1999–2003

P. S. Curtis, C. S. Vogel, C. M. Gough, H. P. Schmid, H.‐B. Su and B. D. Bovard
New Phytologist 167 (2) 437 (2005)
https://doi.org/10.1111/j.1469-8137.2005.01438.x

Components of ecosystem evaporation in a temperate coniferous rainforest, with canopy transpiration scaled using sapwood density

M. M. Barbour, J. E. Hunt, A. S. Walcroft, G. N. D. Rogers, T. M. McSeveny and D. Whitehead
New Phytologist 165 (2) 549 (2005)
https://doi.org/10.1111/j.1469-8137.2004.01257.x

Finite element tree crown hydrodynamics model (FETCH) using porous media flow within branching elements: A new representation of tree hydrodynamics

Gil Bohrer, Hashem Mourad, Tod A. Laursen, Darren Drewry, Roni Avissar, Davide Poggi, Ram Oren and Gabriel G. Katul
Water Resources Research 41 (11) (2005)
https://doi.org/10.1029/2005WR004181

Sap flux of five co-occurring tree species in a temperate broad-leaved forest during seasonal soil drought

Dirk Hölscher, Oliver Koch, Sandra Korn and Ch. Leuschner
Trees 19 (6) 628 (2005)
https://doi.org/10.1007/s00468-005-0426-3

Biogeochemistry of Forested Catchments in a Changing Environment

E. Matzner, B. Köstner and G. Lischeid
Ecological Studies, Biogeochemistry of Forested Catchments in a Changing Environment 172 457 (2004)
https://doi.org/10.1007/978-3-662-06073-5_25

Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands

J. Čermák, J. Kučera and N. Nadezhdina
Trees 18 (5) 529 (2004)
https://doi.org/10.1007/s00468-004-0339-6

Modelling night‐time ecosystem respiration by a constrained source optimization method

Chun‐Ta Lai, Gabriel Katul, John Butnor, David Ellsworth and Ram Oren
Global Change Biology 8 (2) 124 (2002)
https://doi.org/10.1046/j.1354-1013.2001.00447.x

Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO2 concentration

Karina V. R. Schäfer, Ram Oren, Chun‐Ta Lai and Gabriel G. Katul
Global Change Biology 8 (9) 895 (2002)
https://doi.org/10.1046/j.1365-2486.2002.00513.x

Tree species effects on stand transpiration in northern Wisconsin

B. E. Ewers, D. S. Mackay, S. T. Gower, D. E. Ahl, S. N. Burrows and S. S. Samanta
Water Resources Research 38 (7) (2002)
https://doi.org/10.1029/2001WR000830

Effects of aggregated classifications of forest composition on estimates of evapotranspiration in a northern Wisconsin forest

D. S. MACKAY, D. E. AHL, B. E. EWERS, S. T. GOWER, S. N. BURROWS, S. SAMANTA and K. J. DAVIS
Global Change Biology 8 (12) 1253 (2002)
https://doi.org/10.1046/j.1365-2486.2002.00554.x

Gabriel G. Katul, Chun‐Ta Lai, Mario Siqueira, Karina Schäfer, John D. Albertson, Karen H. Wesson, David Ellsworth and Ram Oren
3 31 (2001)
https://doi.org/10.1029/WS003p0031

Estimating maximum mean canopy stomatal conductance for use in models

B E Ewers, R Oren, K H Johnsen and J J Landsberg
Canadian Journal of Forest Research 31 (2) 198 (2001)
https://doi.org/10.1139/x00-159

Modeling CO2 and water vapor turbulent flux distributions within a forest canopy

Chun‐Ta Lai, Gabriel Katul, Ram Oren, David Ellsworth and Karina Schäfer
Journal of Geophysical Research: Atmospheres 105 (D21) 26333 (2000)
https://doi.org/10.1029/2000JD900468

Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit

R. Oren, J. S. Sperry, G. G. Katul, et al.
Plant, Cell & Environment 22 (12) 1515 (1999)
https://doi.org/10.1046/j.1365-3040.1999.00513.x