Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Forecasting the risk of Phytophthora cinnamomi related-decline in Mediterranean forest ecosystems under climate change scenarios

Adrián Cidre-González, Francisco José Ruiz-Gómez, Francisco Javier Bonet and Pablo González-Moreno
Ecological Modelling 505 111115 (2025)
https://doi.org/10.1016/j.ecolmodel.2025.111115

Modelo combinado de idoneidad del hábitat basado en procesos para evaluar el hábitat y el potencial de virulencia de Phytophthora cinnamomi en los ecosistemas forestales mediterráneos

Adrián Cidre González, Pablo González-Moreno and Francisco José Ruiz Gómez
Cuadernos de la Sociedad Española de Ciencias Forestales 50 (1) 51 (2025)
https://doi.org/10.31167/csecfv5i50.20155

Temperature and Fungicide Sensitivity in Three Prevalent Phytophthora Species Causing Phytophthora Root Rot in Rhododendron

Carolyn F. Scagel, Jerry E. Weiland, Bryan R. Beck and Jesse N. Mitchell
Plant Disease 107 (10) 3014 (2023)
https://doi.org/10.1094/PDIS-11-22-2670-RE

Holm oak death is accelerated but not sudden and expresses drought legacies

Guillermo Gea-Izquierdo, Fabio Natalini and Enrique Cardillo
Science of The Total Environment 754 141793 (2021)
https://doi.org/10.1016/j.scitotenv.2020.141793

Widespread dieback in a foundation species on a sub‐Antarctic World Heritage Island: Fine‐scale patterns and likely drivers

Catherine R. Dickson, David J. Baker, Dana M. Bergstrom, Rowan H. Brookes, Jennie Whinam and Melodie A. McGeoch
Austral Ecology 46 (1) 52 (2021)
https://doi.org/10.1111/aec.12958

Saturation excess overland flow accelerates the spread of a generalist soil-borne pathogen

Jean V. Wilkening, Enrique Cardillo, Enrique Abad and Sally E. Thompson
Journal of Hydrology 593 125821 (2021)
https://doi.org/10.1016/j.jhydrol.2020.125821

Phytophthora and vascular plant species distributions along a steep elevation gradient

Ihsanul Khaliq, Treena I. Burgess, Giles E. St. J. Hardy, Diane White and Keith L. McDougall
Biological Invasions (2021)
https://doi.org/10.1007/s10530-020-02450-y

Pathologists and entomologists must join forces against forest pest and pathogen invasions

Hervé Jactel, Marie-Laure Desprez-Loustau, Andrea Battisti, et al.
NeoBiota 58 107 (2020)
https://doi.org/10.3897/neobiota.58.54389

Phytophthora species isolated from alpine and sub-alpine regions of Australia, including the description of two new species; Phytophthora cacuminis sp. nov and Phytophthora oreophila sp. nov

Ihsanul Khaliq, Giles E. St. J. Hardy, Keith L. McDougall and Treena I. Burgess
Fungal Biology 123 (1) 29 (2019)
https://doi.org/10.1016/j.funbio.2018.10.006

eDNA from roots: a robust tool for determining Phytophthora communities in natural ecosystems

Ihsanul Khaliq, Giles E St J Hardy, Diane White and Treena I Burgess
FEMS Microbiology Ecology 94 (5) (2018)
https://doi.org/10.1093/femsec/fiy048

Visualizing the Geography of the Diseases of China: Western Disease Maps from Analytical Tools to Tools of Empire, Sovereignty, and Public Health Propaganda, 1878–1929

Marta Hanson
Science in Context 30 (03) 219 (2017)
https://doi.org/10.1017/S0269889717000205

Current and projected global distribution of Phytophthora cinnamomi, one of the world's worst plant pathogens

Treena I. Burgess, John K. Scott, Keith L. Mcdougall, Michael J. C. Stukely, Colin Crane, William A. Dunstan, Frances Brigg, Vera Andjic, Diane White, Tim Rudman, Frans Arentz, Noboru Ota and Giles E. St. J. Hardy
Global Change Biology 23 (4) 1661 (2017)
https://doi.org/10.1111/gcb.13492

Phenotypic interactions between tree hosts and invasive forest pathogens in the light of globalization and climate change

Jan Stenlid and Jonàs Oliva
Philosophical Transactions of the Royal Society B: Biological Sciences 371 (1709) 20150455 (2016)
https://doi.org/10.1098/rstb.2015.0455

Crop pathogen emergence and evolution in agro‐ecological landscapes

Julien Papaïx, Jeremy J. Burdon, Jiasui Zhan and Peter H. Thrall
Evolutionary Applications 8 (4) 385 (2015)
https://doi.org/10.1111/eva.12251

Large‐scale fuzzy rule‐based prediction for suitable chestnut ink disease sites: a case study in north‐east Italy

E. Dal Maso, L. Montecchio and A. Vannini
Forest Pathology 45 (4) 311 (2015)
https://doi.org/10.1111/efp.12172

Phenotyping Castanea hybrids for Phytophthora cinnamomi resistance

C. Santos, H. Machado, I. Correia, F. Gomes, J. Gomes‐Laranjo and R. Costa
Plant Pathology 64 (4) 901 (2015)
https://doi.org/10.1111/ppa.12313

Rainfall and temperatures changes have confounding impacts on Phytophthora cinnamomi occurrence risk in the southwestern USA under climate change scenarios

Sally E. Thompson, Simon Levin and Ignacio Rodriguez‐Iturbe
Global Change Biology 20 (4) 1299 (2014)
https://doi.org/10.1111/gcb.12463

Ecological and evolutionary implications of spatial heterogeneity during the off‐season for a wild plant pathogen

Ayco J. M. Tack and Anna‐Liisa Laine
New Phytologist 202 (1) 297 (2014)
https://doi.org/10.1111/nph.12646

Consequences of climate change for biotic disturbances in North American forests

Aaron S. Weed, Matthew P. Ayres and Jeffrey A. Hicke
Ecological Monographs 83 (4) 441 (2013)
https://doi.org/10.1890/13-0160.1

Winter survival of Phytophthora alni subsp. alni in aerial tissues of black alder

K. Černý and V. Strnadová
Journal of Forest Science 58 (7) 328 (2012)
https://doi.org/10.17221/11/2012-JFS

Adapting to crop pest and pathogen risks under a changing climate

Robert W. Sutherst, Fiona Constable, Kyla J. Finlay, Richard Harrington, Jo Luck and Myron P. Zalucki
WIREs Climate Change 2 (2) 220 (2011)
https://doi.org/10.1002/wcc.102

Can the emergence of pine Diplodia shoot blight in France be explained by changes in pathogen pressure linked to climate change?

BÉNÉDICTE FABRE, DOMINIQUE PIOU, MARIE‐LAURE DESPREZ‐LOUSTAU and BENOÎT MARÇAIS
Global Change Biology 17 (10) 3218 (2011)
https://doi.org/10.1111/j.1365-2486.2011.02428.x

Forest Type Influences Transmission of Phytophthora ramorum in California Oak Woodlands

Jennifer M. Davidson, Heather A. Patterson, Allison C. Wickland, Elizabeth J. Fichtner and David M. Rizzo
Phytopathology® 101 (4) 492 (2011)
https://doi.org/10.1094/PHYTO-03-10-0064

Cold acclimation of pedunculate oak (Quercus robur L.) at its northernmost distribution range

Tapani Repo, Kirsi Mononen, Leila Alvila, Tuula T. Pakkanen and Heikki Hänninen
Environmental and Experimental Botany 63 (1-3) 59 (2008)
https://doi.org/10.1016/j.envexpbot.2007.10.023

Is a defoliated silver birch seedling able to overcompensate the growth under changing climate?

Liisa Huttunen, Pekka Niemelä, Heli Peltola, et al.
Environmental and Experimental Botany 60 (2) 227 (2007)
https://doi.org/10.1016/j.envexpbot.2006.10.010

Simulating the effects of a climate-change scenario on the geographical range and activity of forest-pathogenic fungi

Marie-Laure Desprez-Loustau, Cécile Robin, Grégory Reynaud, et al.
Canadian Journal of Plant Pathology 29 (2) 101 (2007)
https://doi.org/10.1080/07060660709507447

Prediction and Mapping of the Impact of Winter Temperature on the Development of Phytophthora cinnamomi-Induced Cankers on Red and Pedunculate Oak in France

Benoit Marçais, Magali Bergot, Victorine Pérarnaud, André Levy and Marie-Laure Desprez-Loustau
Phytopathology® 94 (8) 826 (2004)
https://doi.org/10.1094/PHYTO.2004.94.8.826

Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change

Magali Bergot, Emmanuel Cloppet, Victorine Pérarnaud, Michel Déqué, Benoît Marçais and Marie‐Laure Desprez‐Loustau
Global Change Biology 10 (9) 1539 (2004)
https://doi.org/10.1111/j.1365-2486.2004.00824.x

Assessing the consequences of global change for forest disturbance from herbivores and pathogens

Matthew P. Ayres and Marı́a J. Lombardero
Science of The Total Environment 262 (3) 263 (2000)
https://doi.org/10.1016/S0048-9697(00)00528-3