Free access
Issue
Ann. For. Sci.
Volume 57, Number 5-6, June-September 2000
Second International Workshop on Functional-Structural Tree Models
Page(s) 477 - 496
DOI http://dx.doi.org/10.1051/forest:2000136

References

1
Aphalo P.J., Jarvis P.G., Do stomata respond to relative humidity?, Plant Cell Env. 14 (1991) 127-132.
2
Aphalo P.J., Jarvis P.G., An analysis of Ball's empirical model of stomatal conductance, Ann. Bot. 72 (1993) 321-327.
3
Aussenac G., Action du couvert forestier sur la distribution au sol des précipitations, Ann. Sci. For. 27 (1970) 383-399.
4
Balandier P., Lacointe A., Le Roux X., Sinoquet H., Cruiziat P., Le Dizès S., SIMWAL: a structural-functional model simulating single walnut tree growth in response to climate and pruning, Ann. For. Sci. 57 (2000) 571-585.
5
Baldocchi D.D., Hutchison B.A., Matt D.R., McMillen R.T., Seasonal variation in the statistics of photosynthetically active radiation penetration in an oak-hickory forest, Agric. For. Meteorol. 36 (1986) 343-361.
6
Ball J.T., Woodrow I.E., Berry J.A., A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. in: Biggins J. (Ed.) Progress in photosynthesis research, Martinus Nijhoff, Dordrecht, 1987, pp. 221-224.
7
Bauer H., Thoni W., Photosynthetic light acclimation in fully developed leaves of the juvenile and adult life phases of Hedera helix, Physiol. Plant. 73 (1988) 31-37.
8
Becker P., Smith A.P., Spatial autocorrelation of solar radiation in a tropical moist forest understory, Agric. For. Meteorol. 52 (1990) 373-379.
9
Berryman C.A., Eamus D., Duff G.A., Stomatal responses to a range of variables in two tropical tree species grown with CO2 enrichment, J. Exp. Bot. 45 (1994) 539-546.
10
Bouten W., Heimovaara T.J., Tiktak A., Spatial patterns of throughfall and soil water dynamics in a Douglas fir stand, Water Resource Res. 28 (1992) 3227-3233.
11
Brooks J.R., Hinckley T.M., Sprugel D.G., Acclimation responses of mature Abies amabilis sun foliage to shading, Oecologia. 100 (1994) 316-324.
12
Brooks J.R., Sprugel D.G., Hinckley T.M., The effects of light acclimation during and after foliage expansion on photosynthesis of Abies amabilis foliage within the canopy, Oecologia 107 (1996) 21-32.
13
Brunet Y., Modélisation architecturale et transferts turbulents, in: Andrieu B. (Ed.) Modélisation Architecturale, Actes du Séminaire, Paris, 10-12 March 1997, INRA-Bioclimatologie, Paris, 1997, pp. 231-233.
14
Brunet Y., Finnigan J.J., Raupach M.R., A wind tunnel study of air flow in waving wheat: single-point velocity statistics, Bound. Layer Meteorol. 70 (1994) 95-132.
15
Bunce J.A., Does transpiration control stomatal responses to water vapour pressure deficit?, Plant Cell Env. 19 (1996) 131-135.
16
Bussière F., Rainfall interception and subsequent interaction between vegetation and liquid surface water: a review, European J. Agron. (1999) in press.
17
Cescatti A., Modelling the radiative transfer in discontinuous canopies of asymmetric crowns. I. Model structure and algorithms, Ecol. Model. 101 (1997) 263-274.
18
Chazdon R.L., Pearcy R.W., Photosynthetic responses to light variation in rain forest species. I. Induction under constant and fluctuating light conditions, Oecologia 69 (1986) 517-523.
19
Chelle M., Développement d'un modèle de radiosité mixte pour simuler la distribution du rayonnement dans les couverts végétaux, Ph.D. Thesis, University of Rennes I, 1997.
20
Chen S.G., Impens I., Ceulemans R., Kockelbergh F., Measurement of gap fraction of fractal generated canopies using digitalized image analysis, Agric. For. Meteorol. 65 (1993) 245-259.
21
Chen S.G., Shao B.Y., Impens I., Ceulemans R., Effects of plant canopoy structure on light interception and photosynthesis, J. Quant. Spectrosc. Radiat. Transfer 52 (1994) 115-123.
22
Chow W.S., Anderson J.M., Photosynthetic responses of Pisum sativum to an increase in irradiance during growth. I. Photosynthetic activities, Aust. J. Plant Physiol. 14 (1987) 1-8.
23
Cohen S., Fuchs M., Moreshet S., Cohen Y., The distribution of leaf area, radiation, photosynthesis and transpiration in a shamouti orange hedgerow orchard. Part II: Photosynthesis, transpiration, and the effect of row shape and direction, Agric. For. Meteorol. 40 (1987) 145-162.
24
Collineau S, Brunet Y., Detection of turbulent coherent motions in a forest canopy. Part II: time scales and conditional analysis, Bound. Layer Meteorol. 66 (1993) 49-73.
25
Combes D., Sinoquet H., Varlet-Grancher C., Preliminary measurement and simulation of the spatial distribution of the Morphogenetically Active Radiation (MAR) within an isolated tree canopy, Ann. For. Sci. 57 (2000) 497-511.
26
Corelli Grappadelli C., Lakso A.N., Flore J.A., Early season patterns of carbonhydrate partitioning in exposed and shaded apple branches, J. Amer. Soc. Hort. Sci. 119 (1994) 596-603.
27
Correia M.J., Pereira J.S., The control of leaf conductance of white lupin by xylem ABA concentration decreases with the severity of water deficits, J. Exp. Bot. 46 (1995) 101-110.
28
Cowan I., Farquhar G.D., Stomatal function in relation to leaf metabolism and environment. Integration of activity in the higher plant, Soc. Exp. Biol. Symp., Vol. 31. Cambridge University Press, New York, 1977, pp. 471-505.
29
Daudet F-A., Le Roux X., Sinoquet H., Adam B., Wind speed and leaf boundary layer conductance variations within tree crown: consequences on leaf-to-atmosphere coupling and tree functions, Agric. For. Meteorol. 97 (1999) 171-185.
30
Dauzat J., Hautecoeur O., Simulation des transferts radiatifs sur maquettes informatiques de couverts végétaux, in: Physical measurements and signatures in remote sensing, Proc. 5th Int. Coll. ESA, ESA, Frascatti, Italy, 1991, pp. 415-418.
31
Dauzat J., Rapidel B., Berger A., Simulation of leaf transpiration and sap flow in virtual plants: description of the model and application to a coffea plantation in Costa Rica, Agric. For. Meteorol. (1999) in press.
32
Davis J.T., Sparks D., Assimilation and translocation patterns of carbon-14 in the shoot of fruiting pecan trees, Carya illinoensis Koch, J. Amer. Soc. Sci. 99 (1974) 468-480.
33
De Castro F., Fetcher N., Three dimensional model of the interception of light by a canopy, Agric. For. Meteorol. 90 (1998) 215-233.
34
De Reffye P., Fourcaud T., Blaise F., Barthélémy D., Houllier F., A functional model of tree growth and tree architecture, Silva Fenn. 31 (1997) 297-311.
35
DeJong T.M., Doyle J.F., Seasonal relationships between leaf nitrogen content (photosynthetic capacity) and leaf canopy light exposure in peach (Prunus persica), Plant Cell Env. 8 (1985) 701-706.
36
Denmead O.T., Bradley E.F., Flux-gradient relationships in a forest canopy, in: Hutchison B.A., Hicks B.B. (Eds.), The forest-atmosphere interaction, D. Reidel, Dordrecht, The Netherlands, 1985, pp. 421-442.
37
Denmead O.T., Bradley E.F., On scalar transport in plant canopies, Irrig. Sci. 8 (1987) 131-149.
38
Dewar R.C., Interpretation of an empirical model for stomatal conductance in terms of guard cell function, Plant Cell Env. 18 (1995) 365-372.
39
Dewar R.C., Medlyn B.E., McMurtrie R.E., A mechanistic analysis of light and carbon use efficiencies, Plant Cell Env. 21 (1998) 573-588.
40
Dixon R.K., Brown S., Houghton R.A., Solomon A.M., Trexler M.C., Wisniewski J., Carbon pools and flux of global forest ecosystems, Science 263 (1994) 185-190.
41
Ellsworth D.S., Reich P.B., Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest, Oecologia 96 (1993) 169-178.
42
Eschrich W., Burchardt R., Essiamah S., The induction of sun and shade leaves of the European beech (Fagus sylvatica L.): anatomical studies, Trees 3 (1989) 1-10.
43
Evans J.R., Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy. I. Canopy characteristics, Aust. J. Plant Physiol. 20 (1993) 55-67.
44
Farquhar G.D., Feedforward responses of stomata to humidity, Aust. J. Plant Physiol. 5 (1978) 787-800.
45
Farquhar G.D., von Caemmerer S., Berry J.A., A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta 149 (1980) 78-90.
46
Ferrar P.J., Osmond C.B., Nitrogen supply as a factor influencing photoinhibition and photosynthetic acclimation after transfer of shade-grown Solanum dulcamara to bright light, Planta 168 (1986) 563-570.
47
Field C., Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program, Oecologia 56 (1983) 341-347.
48
Finnigan J.J., Turbulent transport in flexible plant canopies, in: Hutchison B.A., Hicks B.B. (Eds.), The forest-atmosphere interaction, D. Reidel, Dordrecht, The Netherlands, 1985, pp. 443-480.
49
Ford E.D., Deans J.D., The effect of canopy structure on stemflow, throughfall and interception loss in young Sitka Spruce plantation, J. Appl. Ecol. 15 (1978) 905-917.
50
Freer-Smith P.H., Broadmeadow M.S., The uptake of particulates by urban woodland, Environ. Pollution 95 (1997) 27-35.
51
Gash J.H.C., An analytical model of rainfall interception by forets, Quart. J. R. Meteorol. Soc. 105 (1979) 43-55.
52
Gastellu-Etchegorry J.P., Demarez V., Pinel V., Zagolski F., Modeling radiative transfer in heterogeneous 3-D vegetation canopies, Remote Sens. Environ. 58 (1996) 131-156.
53
Godin C., Caraglio Y., A multiscale model of plant topological structure, J. Theor. Biol. 191 (1998) 1-46.
54
Godin C., Costes E., Sinoquet H., A method for describing plant architecture which integrates topology and geometry, Ann. Bot. 84 (1999) 343-357.
55
Grantz D., Plant response to atmospheric humidity, Plant Cell Env. 13 (1990) 667-679.
56
Green S.R., Grace J., Hutchings N.J., Observations of turbulent air flow in three stands of widely spaced Sitka spruce, Agric. For. Meteorol. 74 (1995) 205-225.
57
Gross G., A numerical study of the air flow within and around a single tree, Boundary-Layer Meteorol. 40 (1987) 311-327.
58
Guenther A., Greenberg J., Harley P., Helmig D., Klinger L., Vierling L., Zimmerman P., Geron C., 1996b, Leaf, branch, stand and landscape scale measurements of volatile organic compounds fluxes from U.S. woodlands, Tree Physiol. 16, 17-24.
59
Hansen P., 14C-studies on apple trees. I. The effect of the fruit on the translocation and distribution of photosynthesis, Physiol. Plant. 20 (1967) 382-391.
60
Herwitz S.R., Interception storage capacity of tropical rainforest canopy trees, J. Hydrol. 77 (1985) 237-252.
61
Hikosaka K., Murakami A., Hirose T., Balancing carboxylation and regeneration of ribulose-1,5-bisphosphate in leaf photosynthesis: temperature acclimation of an evergreen tree, Quercus myrsinaefolia, Plant Cell Env. 22 (1999) 841-849.
62
Hollinger D.Y., Optimality and nitrogen allocation in a tree canopy, Tree Physiol. 16 (1996) 627-634.
63
Horn H.S., The adaptive geometry of trees, Princeton Univ. Press, Princeton, NJ, USA, 1971, 144 pp.
64
Host G.E., Rauscher H.M., Isebrands J.G., Michael D.A., Validation of photosynthate production in ECOPHYS, an ecophysiological growth process model of Populus, Tree Physiol. 7 (1990) 283-296.
65
Infante J.M., Rambal S., Joffre R., Modelling transpiration in holm-oak savannah: scaling up from the leaf to the tree scale, Agric. For. Meteorol. 87 (1997) 273-289.
66
Jarvis P.G., The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field, Phil. Trans. R. Soc. London B. 273 (1976) 593-610.
67
Jarvis P.G., McNaughton K.G., Stomatal control of transpiration: scaling up from leaf to region, Adv. Ecol. Res. 15 (1986) 1-49.
68
Jiagang L., A theoretical model of the process of rainfall interception in forest canopy, Ecol. Modelling 42 (1988) 111-123.
69
Jones H.G., Sutherland R.A., Stomatal control of xylem embolism, Plant Cell Environ. 14 (1991) 607-612.
70
Jordan D.B., Ogren W.L., The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase, Planta 161 (1984) 308-313.
71
Kaimal J.C., Finnigan J.J., Atmospheric boundary layer flows. Their structure and measurement, Oxford Universitry Press, Oxford, 1994, 289 pp.
72
Kaplan W., Wofsy S., Keller M., Da Costa J.M., Emission of NO and deposition of O3 in a tropical forest system, J. Geophys. Res. 93 (1988) 1389-1395.
73
Kellomäki S., Strandman H., A model for the structural growth of young Scots pine crowns based on light interception by shoots, Ecol. Modell. 80 (1995) 237-250.
74
Kimes D.S., Kirchner J.A., Radiative transfer model for heterogeneous 3D scenes, Appl. Opt. 21 (1982) 4119-4129.
75
Kimura K., Ishida A., Uemura A., Matsumoto Y., Terashima I., Effects of current-year and previous-year PPFDs on shoot gross morphology and leaf properties in Fagus japonica, Tree Physiol. 18 (1998) 459-466.
76
Kuuluvainen T., Pukkala T., Effect of crown shape and tree distribution on the spatial distribution of shade, Agric. For. Meteorol. 40 (1987) 215-231.
77
Lacointe A., Carbon allocation among tree organs: a review of basic processes and representation, Ann. For. Sci. 57 (2000) 521-533.
78
Le Roux X., Sinoquet H., Vandame M., Spatial distribution of leaf dry weight per area and leaf nitrogen content in relation to local radiation regime within an isolated tree crown, Tree Physiol. 19 (1999a) 181-188.
79
Le Roux X., Grand S., Dreyer E., Daudet F.A., Parameterization and testing of a biochemically based photosynthesis model for walnut (Juglans regia L.) trees and seedlings, Tree Physiol. 19 (1999b) 481-492.
80
Lescourret F., Ben Mimoun M., Génard M., A simulation model of growth at the shoot-bearing fruit level. I. Description and parameterization for peach, Eur. J. Agron. 9 (1998) 173-188.
81
Leuning R., A critical appraisal of a combined stomatal-photosynthesis model for C3 plants, Plant Cell Env. 18 (1995) 339-355.
82
Leuning R., Kelliher F.M., De Pury D.G.G., Schulze E.D., Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies, Plant Cell Environ. 18 (1995) 1183-1200.
83
Loustau D., Berbigier P., Granier A., El Hadj Moussa F., Interception loss, throughfall and stemflow in a maritime pine stand. I. Variability of throughfall and stemflow beneath the pine canopy, J. Hydrol. 138 (1992) 449-467.
84
Mäkelä A., Hari P., Stand growth model based on carbon uptake and allocation in individual trees, Ecol. Modell. 33 (1986) 205-229.
85
Mattingley G.E., Harrje D., Heisler G., The effectiveness of an evergreen windbreak for reducing residential energy consumption. ASHRAE Trans. 85 (1979) 428-444.
86
McMillen G.G., McGlendon J.H., Leaf angle: an adaptive feature of sun and shade leaves, Bot. Gaz. 140 (1979) 437-442.
87
McNaughton K.G., Jarvis P.G., Predicting effects of vegetation changes on transpiration and evaporation, in: Kozlowski T.T. (Ed.), Water Deficits and Plant Growth, Vol. VII, Academic Press, New-York, 1983, pp. 1-47.
88
Meinzer F.C., Stomatal control of transpiration, Trees 8 (1993) 289-294.
89
Meinzer F.C., Andrade J.L., Goldstein G., Holbrook N.M., Cavelier J., Jackson P., Control of transpiration from the upper canopy of a tropical forest: the role of stomatal, boundary layer and hydraulic architecture components, Plant Cell Env. 20 (1997) 1242-1252.
90
Minorsky P.V., Temperature sensing by plants: a review and hypothesis, Plant Cell Env. 12 (1989) 119-135.
91
Monteith J.L., Evaporation and environment, Symp. Soc. Exp. Biol. 19 (1965) 205-234.
92
Monteith J.L., Solar radiation and productivity in tropical ecosystems, J. Appl. Ecol. 2 (1972) 747-766.
93
Monteith J.L., A reinterpretation of stomatal responses to humidity, Plant Cell Env. 18 (1995) 357-364.
94
Monteith J.L., Unsworth M.H., Principles of environmental physics, Edward Arnold, London, 1990, p. 291.
95
Mott K.A., Parkhurst D.F., Stomatal response to humidity in air and helox, Plant Cell Env. 14 (1991) 509-515.
96
Myneni R.B., Modeling radiative transfer and photosynthesis in three-dimensional vegetation canopies, Agric. For. Meteorol. 55 (1991) 323-344.
97
Myneni R.B., Ross J., Asrar G., A review of the photon transport in leaf canopies, Agric. For. Meteorol. 45 (1989) 1-153.
98
Niinemets Ü., Are compound-leaved woody species inherently shade-intolerant? An analysis of species ecological requirements and foliar support costs, Plant Ecol. 134 (1998) 1-11.
99
Norman J.M., Jarvis P.G., Photosynthesis in Sitka spruce (Picea sitchensis (bong.) carr.). V. Radiation penetration theory and a test case, J. Appl. Ecol. 12 (1975) 839-878.
100
Nougier J.P., Méthodes de calcul numérique, Masson, Paris, 1985, 325 pp.
101
Ogée J., Modélisation lagrangienne des transferts de scalaires entre forêt et atmosphère, DEA Thesis, University of Toulouse III, 1996, 31 pp.
102
Oker-Blom P., The influence of penumbra on the distribution of direct solar radiation in a canopy of Scots pine, Photosynthetica 19 (1985) 312-317.
103
Oker-Blom P., Kellomäki S., Effect of grouping of foliage on the within-stand and the within-crown light regime: comparison of random and grouping canopy models, Agric. Meteorol. 28 (1983) 143-155.
104
Pagès L., Doussan C., Vercambre G., Below-ground environment and resource acquisition. Simulation models should include plant structure and function, Ann. For. Sci. 57 (2000) 513-520.
105
Pearcy R.W., Sunflecks and photosynthesis in plant canopies, Ann. Rev. Plant Physiol. 41 (1990) 421-453.
106
Pearcy R.W., Yang W., A three-dimensional shoot architecture model for assessment of light capture and carbon gain by understory plants, Oecologia 108 (1996) 1-12.
107
Pearcy R.W., Sims D.A., Photosynthetic acclimation to changing light environments: scaling from the leaf to the whole plant. in: Caldwell M.M., Pearcy R.W. (Eds.), Exploitation of environmental heterogeneity by plants. Ecophysiological processes above- and belowground, Academic Press, San Diego, 1994, pp. 145-208.
108
Penman H.L., Natural evaporation from open water, bare soil and grass, Proc. Roy. Soc. London A 194 (1948) 120-145.
109
Perttunen J., Sievänen R., Nikinmaa E., Salminen H., Saarenmaa H., Väkevä J., LIGNUM: a tree model based on simple structural units, Ann. Bot. 77 (1996) 87-98.
110
Planchais I., Sinoquet H., Foliage determinants of light interception in sunny and shaded branches of Fagus sylvatica (L.), Agric. For. Meteorol. 89 (1998) 241-253.
111
Raupach M.R., A Lagrangian analysis of scalar transfer in vegetation canopies, Q. J. R. Meteorol. Soc. 113 (1987) 107-120.
112
Raupach M.R., Turbulent transfer in canopies, in: Russel G., Marshall B., Jarvis P.G. (Eds.), Plant canopies: their growth, from and function, Cambridge University Press, Cambridge, 1989, pp. 41-61.
113
Rauscher H.M., Isebrands J.G., Host G.E., Dickson R.E., Dickmann D.I., Crow T.R., Michael D.A., ECOPHYS: an ecophysiological growth process model for juvenile poplar, Tree Physiol. 7 (1990) 255-281.
114
Rôças G., Barros C.F., Scarano F.R., Leaf anatomy of Alchornea triplinervia (Euphorbiaceae) under distinct light regimes in a Brazilian montane Atlantic rain forest, Trees. 11 (1997) 469-473.
115
Roden J.S., Pearcy R.W., Effect of leaf flutter on the light environment of poplars, Oecologia 93 (1993) 201-207.
116
Ross J., The radiation regime and architecture of plants stands, Junk Pub., The Hague, 1981, 391 pp.
117
Ross J., Sulev M., Saarelaid P., Statistical treatment of the PAR variability and its application to willow coppice, Agric. For Meteorol. 91 (1998) 1-21.
118
Rutter A.J., Kershaw K.A., Robins P.C., Morton A.J., A predictive model of rainfall interception in forests. I. Derivation of the model from observations in a plantation of Corsican pine, Agric. Meteorol. 9 (1971) 367-384.
119
Salmon J., Simulation de l'écoulement de la pluie sur des maquettes de plantes, DEA Thesis, University of Pointe-à-Pitre, 1996, 35 pp.
120
Shuttleworth W.J., Micrometeorology of temperate and tropical forest, Phil. Trans. R. Soc. Lond. B. 324 (1989) 299-334.
121
Sims D.A., Pearcy R.W., Photosynthetic characteristics of a tropical forest understorey herb, Alocasia macrorrhiza, and a related crop species, Colocasia esculenta grown in contrasting light environments, Oecologia 79 (1989) 53-59.
122
Sinoquet H., Bonhomme R., Modeling radiative transfer in mixed and row intercropping systems, Agric. For. Meteorol. 62 (1992) 219-240.
123
Sinoquet H., Le Roux X., Adam B., Améglio T., Daudet F.A., Modélisation de la distribution spatiale du microclimat lumineux, de la transpiration et de la photosynthèse : application à un arbre isolé. in: Bonhomme R., Maillard P. (Eds.), Fonctionnement des peuplements végétaux sous contraintes environnementales, INRA Éditions, 2000, pp. 185-199.
124
Sperry J.S., Pockmann W.T., Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis, Plant Cell Env. 16 (1993) 279-287.
125
Sprugel D.G., Brooks J.R., Hinckley T.M., Effects of light on shoot geometry and needle morphology in Abies amabilis, Tree Physiol. 16 (1996) 91-98.
126
Sprugel D.G., Hinckley T.M., Schaap W., The theory and practice of branch autonomy, Ann. Rev. Ecol. Syst. 22 (1991) 309-334.
127
Stenberg P., Simulations of the effects of shoot structure and orientation on vertical gradients in intercepted light by conifer canopies, Tree Physiol. 16 (1996) 99-108.
128
Takenaka A., Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot, Ecol. Res. 9 (1994a) 109-114.
129
Takenaka A., A simulation model of tree architecture development based on growth response to local light environment, J. Plant Res. 107 (1994b) 321-330.
130
Tardieu F., Davies W.J., Root-shoot communication and whole-plant regulation of water flux, in: Smith J.A.C., Griffiths H. (Eds.), Water deficits. Plant responses from cell to community, Bios Sci. Publ., Oxford, 1993, pp. 147-162.
131
Thompson O., Pinker R., Wind and temperature profile characteristics in a tropical evergreen forest in Thailand, Tellus 27 (1975) 562-573.
132
Thornley J.H.M., Photosynthesis, in: J.H.M. Thornley (Ed), Mathematical models in plant physiology, Academic Press, London, 1976, pp. 92-110.
133
Thornley J.H.M., Dynamic model of leaf photosynthesis with acclimation to light and nitrogen, Ann. Bot. 81 (1998) 421-430.
134
Thorpe M.R., Saugier B., Auger S., Berger A., Méthy M., Photosynthesis and transpiration of an isolated tree: model and validation, Plant Cell Env. 1 (1978) 269-277.
135
Tyree M.T., Sperry J.S., Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model, Plant Physiol. 88 (1988) 574-580.
136
Valladares F., Allen M.T., Pearcy R.W., Photosynthetic responses to dynamic light under field conditions in six tropical rainforest shrubs occuring along a light gradient, Oecologia 111 (1997) 505-514.
137
Wang Y.P., Jarvis P.G., Description and validation of an array model: MAESTRO, Agric. For. Meteorol. 51 (1990) 257-280.
138
Whitehead D., Regulation of stomatal conductance and transpiration in forest canopies, Tree Physiol. 18 (1998) 633-644.
139
Whitehead D., Grace J.C., Godfrey M.J.S., Architectural distribution of foliage in individual Pinus radiatia D. Don crowns and the effect of clumping on radiation interception, Tree Physiol. 7 (1990) 135-155.
140
Wilson J.D., Turbulent transport within the plant canopy, in: Estimation of Areal Evapotranspiration, IAHS Publ. No. 177, 1989, pp. 43-80.
141
Wilson J.D., Shaw R.H., A higher order closure model for canopy flow, J. Appl. Meteorol. 16 (1977) 1197-1205.
142
Wong S., Cowan I.R., Farquhar G.D., Stomatal conductance correlates with photosynthetic capacity, Nature 282 (1979) 424-426.
143
Yamada T., A numerical study of turbulent airflow in and above a forest canopy, J. Meteorol. Soc. Jap. 60 (1982) 439-454.
144
Zhang H., Nobel P.S., Dependency of Ci/Ca and leaf transpiration efficiency on the vapour pressure deficit, Aust. J. Plant Physiol. 23 (1996) 561-568.


Abstract

Copyright INRA, EDP Sciences