Free access
Issue
Ann. For. Sci.
Volume 57, Number 5-6, June-September 2000
Second International Workshop on Functional-Structural Tree Models
Page(s) 535 - 541
DOI http://dx.doi.org/10.1051/forest:2000140

References

1
Barlow P.W., Rathfelder E.L., Correlations between the dimensions of different zones of grass root apices, and their implication for morphogenesis and differentiation in roots, Ann. Botan. 53 (1984) 249-260.
2
Borchert R., Honda H., Control of development in the bifurcating branch system of Tabebuia rosea: A computer simulation, Botan. Gaz. 145 (1984) 184-195.
3
Champagnat P., Payan E., Champagnat M., Barnola P., Lavarenne S., Bertholon C., La croissance rythmique de jeunes chênes pédonculés cultivés en conditions contrôlées et uniformes, in: L'Arbre, Naturalia Monspeliensia No. h.s. (1986) 303-337.
4
Coutts M.P., Developmental processes in tree root systems, Canad. J. For. Res. 17 (1987) 761-767.
5
Clausnitzer V., Hopmans J.W., Simultaneous modeling of transient three-dimensional root growth and soil water flow, Plant Soil 164 (1994) 299-314.
6
Diggle A.J., ROOTMAP - a model in three-dimensional coordinates of the growth and structure of fibrous root systems, Plant Soil 105 (1988) 169-178.
7
Drew M.C., Saker L.R., Nutrient supply and the growth of Barley. II. Localized, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system, J. Exp. Bot. 26 (1974) 79-90.
8
Ho L.C., Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength, Ann. Rev. Plant Physiol. 39 (1988) 355-378.
9
Huck M.G., Hillel D., A model of root growth and water uptake accounting for photosynthesis, respiration, transpiration, and soil hydraulics, Adv. Irrig. 2 (1983) 273-333.
10
Jones J.W., Dayan E., Allen L.H., van Keulen H., Challa H., A dynamic tomato growth and yield model (TOMGRO), Trans. ASAE 34 (1991) 663-672.
11
Kurth W., Sloboda B., Growth grammars simulating trees - An extension of L-Systems incorporating local variables and sensitivity, Silvae Fenn. 31 (1997) 285-295.
12
Pagès L., Growth patterns of the lateral roots in young oak (Quercus robur L.) trees. Relationship with apical diameter, New Phytol. 130 (1995) 503-509.
13
Pagès L., Aries F., SARAH : modèle de simulation de la croissance, du développement, et de l'architecture des systèmes racinaires, Agronomie 8 (1988) 889-896.
14
Pagès L., Jordan M.O., Picard D., Simulation of the three-dimensional architecture of the maize root system, Plant Soil 119 (1989) 147-154.
15
Pagès L., Pierre N., Petit P., Growth correlations within the root system of young oak trees, in: Root ecology and its Practical applications, Kutschera L., Hübl E., Lichtenegger E., Persson H., Sobotik M. (Eds.), Verein fuer Wurzelforschung, Klagenfurt, 1992, pp. 505-508.
16
Prusinkiewicz P., Lindenmayer A., The Algorithmic Beauty of Plants. Springer-Verlag, New York, USA, 1990.
17
Prusinkiewicz P., Hammel M., Hanan J., Mech R., Visual models of plant development, in: Handbook of formal languages, Rozenberg G., Salomaa A. (Eds.), Vol. III, Springer - Berlin, 1997, pp. 537-597.
18
Reffye P., Fourcaud T., Blaise P., Barthélémy D., Houillier F., A functional model of tree growth and tree architecture, Silvae Fenn. 31 (1997) 297-311.
19
Thaler P., Pagès L., Root apical diameter and root elongation rate of rubber seedlings (Hevea brasiliensis) show parallel responses to photoassimilate availability, Physiol. Plant. 97 (1996) 365-371.
20
Thaler P., Pagès L., Modelling the influence of assimilate availability on root growth and architecture, Plant Soil 201 (1998) 307-320.


Abstract

Copyright INRA, EDP Sciences