Free access
Issue
Ann. For. Sci.
Volume 57, Number 5-6, June-September 2000
Second International Workshop on Functional-Structural Tree Models
Page(s) 555 - 569
DOI http://dx.doi.org/10.1051/forest:2000142

References

1
Berbigier P., Bonnefond J.-M., Measurement and modelling of radiation transmission within a stand of maritime pine (Pinus pinaster Aït.), Ann. Sci. For. 52 (1995) 23-42.
2
Bosc A., Étude expérimentale du fonctionnement hydrique et carboné des organes aériens du Pin maritime (Pinus pinaster Aït.) : intégration dans un modèle Structure-Fonction appliqué à l'analyse de l'autonomie carbonée des branches de la couronne d'un arbre adulte. Thèse de l'Université de Bordeaux II (1999) 192 p.
3
Bossel H., TREEDYN 3 Forest Simulation Model. Mathematical model, program documentation, and simulation results. Berichte des Forschungszentrums Waldökosysteme, Ser. B 35. Göttingen, 118 p.
4
Cannell M.G.R., Dewar R.C., Carbon allocation in trees: a review of concepts for modelling, Adv. Ecol. Res. 25 (1994) 59-104.
5
Cannell M.G.R., Morgan J., Theoretical study of variables affecting the export of assimilates from branches of Picea, Tree Physiol. 6 (1990) 257-266.
6
DeReffye P., Elguero E., Costes E., Growth units construction in trees: stochastics approach, Acta Biotheor. 39 (1991) 325-342.
7
DeReffye P., Fourcaud T., Blaise F., Barthélémy D., Houllier F., A functional model of tree growth and tree architecture, Silva Fenn. 31 (1997) 297-311.
8
Desprez-Loustau M.L., Dupuis F., Variation in the phenology of shoot elongation between geographic provenances of maritime pine (Pinus pinaster) - implications for the synchrony with the phenology of the twisting rust fungus, Melampsora pinitorqua, Ann. Sci. For. 51 (1994) 553-568.
9
Diawara A., Loustau D., Berbigier P., Comparison of two methods for estimating the evaporation of a Pinus pinaster stand: sap flow and energy balance with sensible heat flux measurements by an eddy covariance method, Agric. For. Meteorol. 54 (1991) 49-66.
10
Farnsworth K.D., Van Gardingen P.R., Allometric analysis of Sitka spruce branches: mechanical versus hydraulic design principles, Trees 10 (1995) 1-12.
11
Farquhar G.D., Von Caemmerer S., Berry J.A., A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta 149 (1980) 78-90.
12
Field C.B., Ball J.T., Berry J.A., Photosynthesis: principles and field techniques, in: Pearcy R.W., Ehleringer J., Mooney H.A., Rundel P.W. (Eds.), Plant physiological ecology: Field methods and instrumentation, Chapman and hall, London, 1989, pp. 209-253.
13
Granier A., Loustau D., Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data, Agric. For. Meteorol. 22 (1994) 145-148.
14
Honkanen T., Haukioja E., Why does a branch suffer more after branch-wide than after tree-wide defoliation?, Oikos 71 (1994) 441-450.
15
Jarvis J.P., The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field, Phil. Trans. R. Soc. Lond. B. 273 (1976) 593-610.
16
Lacointe A., Gary C., Demotes-Mainard S., Vandame M., La répartition des assimilats dans la plante: faits et hypothèses, in: Actes de l'école-chercheurs INRA en bioclimatologie, Unité de bioclimatologie INRA, F-78850 Thiverval-Grignon, 1996, pp. 155-180.
17
Landsberg J.J., Waring R.H., A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning, For. Ecol. Manage. 95 (1997) 209-228.
18
Le Dizès S., Cruiziat P., Lacointe A., Sinoquet H., Le Roux X., Balandier P., Jacquet P., A model for simulating structure-function relationships in walnut tree growth processes, Silva Fenn. 31 (1997) 313-328.
19
Lemoine B., Growth and yield of maritime pine (Pinus pinaster Aït.): the average dominant tree of the stand, Ann. Sci. For. 48 (1991) 593-611.
20
Loustau D., Domec J.C., Bosc A., Interpreting the variations in xylem sap flux density within the trunk of Maritime pine (Pinus pinaster Aït.): application of a model for calculating water flows at tree and stand levels, Ann. Sci. For. 55 (1998) 29-45.
21
McMurtrie R.E., Comins H.N., Kirschbaum M.U.F., Wang Y.P., Modifying existing forest growth models to take account of effects of elevated CO2, Aust. J. Bot. 40 (1992) 657-677.
22
Oker-Blom P., Kellomäki S., Smolander H., Photosynthesis of Scots pine shoot: the effect of shoot inclination on the photosynthetic response of a shoot subjected to direct radiation, Agric. Meteorol. 29 (1983) 191-206.
23
Oker-Blom P., Smolander H., The ratio of shoot silhouette to total needle area in Scots pine, For. Sci. 34 (1988) 894-906.
24
Perttunen J., Sievänen R., Nikinmaa E., Salminen H., Saarenmaa H., Väkevä J., LIGNUM: a tree model based on simple structural units, Ann. Bot. 77 (1996) 87-98.
25
Poorter H., Villar R., The fate of acquired carbon in plants: chemical composition and construction costs, in: Plant resource allocation, Bazzaz F.A., Grace J. (Eds.), Academic Press, San Diego USA (1997) 39-72.
26
Porté A., Modélisation des effets du bilan hydrique sur la production primaire et la croissance d'un couvert de Pin maritime (Pinus pinaster Aït.) en Lande humide. Thèse de l'Université de Paris-Sud (1999) 171p.
27
Porté A., Loustau D., Variability of the photosynthetic characteristics of mature needles within the crown of a 25-year-old Pinus pinaster, Tree Physiol. 18 (1998) 223-232.
28
Running S.W., Gower S.T., FOREST-BGC, a general model of forest ecosystem processes for regional applications, II. Dynamic carbon allocation and nitrogen budgets, Tree Physiol. 9 (1991) 147-160.
29
Ryan M.G., Linder S., Vose J.M., Hubbard R.M., Dark respiration of pines, Ecol. Bull. 43 (1994) 50-63.
30
Sachs T., Novoplansky A., Cohen D., Plants as competing populations of redundant organs, Plant Cell. Envir. 16 (1993) 765-770.
31
Sprugel D.G., Hinckley T.M., Schaap W., The theory and practice of branch autonomy, Ann. Rev. Ecol. Syst. 22 (1991) 309-334.
32
Uotila A., Mustonen S., The effect of different levels of green pruning on the diameter growth of Pinus sylvestris, L. Scand. J. For. Res. 9 (1994) 226-232.
33
Wang Y.P., Jarvis P.G., Influence of crown structural properties on PAR absorption, photosynthesis, and transpiration in Sitka spruce, application of a model (MAESTRO), Tree Physiol. 7 (1990) 297-316.
34
Wang Y.P., Jarvis P.G., Influence of shoot structure on the photosynthesis of sitka spruce (Picea sitchensis) Funct. Ecol. 7 (1993) 433-451.
35
Witowshi J., Gas exchange of the lowest branches of young Scots pine: a cost-benefit analysis of seasonal branch carbon budget, Tree Physiol. 17 (1997) 757-765.


Abstract

Copyright INRA, EDP Sciences