Free access
Ann. For. Sci.
Volume 59, Number 7, November 2002
Page(s) 723 - 752


  1. Améglio T., Morizet J., Cruiziat P., Martignac M., The effects of root temperature on water flux, potential and root resistance in sunflower, Agronomie 10 (1990) 331-340.
  2. Améglio T., Cruiziat P., Alternance tension/pression de la sève dans le xylème chez le noyer pendant l'hiver : rôle des températures, C. R. Acad. Sci. Paris Sér. 3 (Sci. Vie) 315 (1992) 429-435.
  3. Améglio T., Cruiziat P., Béraud S., Alternance tension/pression de la sève dans le xylème chez le noyer pendant l'hiver : conséquences sur la conductance hydraulique des rameaux, C. R. Acad. Sci. Paris Sér. 3 (Sci. Vie) 318 (1995) 351-357.
  4. Améglio T., Cochard H., Picon C., Cohen M., Water relations and hydraulic architecture of peach trees under drought conditions, in: Proc. Fourth Intern. Peach Symposium, Monet R. (Ed.), Acta Hort. 465 (1998) 355-361.
  5. Améglio T., Archer P., Cochen M., Valancogne C., Daudet F.A., Dayau S., Cruiziat P., Significance and limit in the use of predawn leaf water potential for tree irrigation, Plant Soil 207 (1999a) 155-167.
  6. Amégio T., Perrier C., Le Roux X., Mingeau M., Drought effect on water relations and fruit yield in highbush blueberries, Fruits 54 (1999b) 423-430.
  7. Améglio T., Guilliot A., Lacointe A., Alves G., Julien J.L., Petel G., Valentin V., Water relation in winter: Effect on budbreak of walnut tree, in: Viémont J.D., Crabbé J. (Eds.), Dormancy in Plants, CAB International, 2000, pp. 109-120.
  8. André J.P., Heterogeneous, branched, zigzag and circular vessels: unexpected but frequent forms of tracheary element files: description-localization-formation, in: Savidge R.A., Barnett J.R., Napier R. (Eds.), Cell and Molecular Biology of Wood Formation, Experimental Biology Reviews, Bios Scientific Publishers Ltd, Oxford, UK, 2000, pp. 387-395.
  9. André J.P., Une nouvelle vision de l'organisation vasculaire des angiospermes, le moulage histologique, INRA Éditions, 2002.
  10. Assmann E., The principles of forest yield study, Pergamon Press, 1970, 560 p.
  11. Barthélémy D., Edelin C., Halle F., Canopy Architecture, in: Raghavendra A.S. (Ed.), Physiology of Trees, John Wiley & Sons, Inc. New York, USA, 1991, pp. 1-20.
  12. Becker P., Tyree M.T., Tsuda M., Hydraulic conductances of angiosperms versus conifers: similar transport sufficiency at the whole-plant level, Tree Physiol. 19 (1999) 445-452.
  13. Becker P., Gribben R.J., Lim C.M., Tapered conduits can buffer hydraulic conductance from path-length effects, Tree Physiol. 20 (2000) 965-967.
  14. Boyer J.S., Water transport, Annu. Rev. Plant Physiol. 36 (1985) 473-516.
  15. Cochard H., Tyree M.T., Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism, Tree Physiol. 6 (1990) 393-407.
  16. Cochard H., Vulnerability of several conifers to air embolism, Tree Physiol. 11 (1992) 73-83.
  17. Cochard H., Cruiziat P., Tyree M.T., Use of positive pressures to establish vulnerability curves. Further support for the air-seeding hypothesis and implications for pressure-volume analysis, Plant Physiol. 100 (1992a) 205-209.
  18. Cochard H., Breda N., Granier A., Aussenac G., Vulnerability to air embolism of three european oak species (Quercus petraea (Matt) Liebl, Q. pubescens Willd, Q. robur L.), Ann. Sci. For. 49 (1992b) 225-233.
  19. Cochard H., L'embolie estivale et hivernale : données actuelles et mécanismes, in: Cruiziat P. (Ed.), L'eau dans la vie de l'arbre, 14-15/04/94, Séminaire du Groupe d'Étude de l'Arbre, Inra-PIAF, Clermont-Ferrand Theix, 1995, pp. 67-97.
  20. Cochard H., Bréda N., Granier A., Whole-tree hydraulic conductance and water losss regulation of Quercus petraea during drought: evidence for stomatal control of embolism? Ann. Sci. For. 53 (1996a) 197-206.
  21. Cochard H., Ridolfi M., Dreyer E., Responses to water stress in an ABA-unresponsive hybrid poplar (Populus koreana $\times$ trichocarpa cv `Peace') II: Hydraulic properties and xylem embolism, New Phytol. 134 (1996b) 455-461.
  22. Cochard H., Peiffer M., Le Gall K., Granier A., Developmental control of xylem hydraulic resistances and vulnerability to embolism in Fraxinus excelsior L.: impacts on water relations, J. Exp. Bot. 48 (1997) 655-663.
  23. Cochard H., Granier A., Fonctionnement hydraulique des arbres forestiers, Rev. For. Fr. 2 (1999) 121-134.
  24. Cochard H., Lemoine D., Dreyer E., The effects of acclimation to sunlight on the xylem vulnerability to embolism in Fagus sylvatica L., Plant Cell Environ. 22 (1999) 101-108.
  25. Cochard H., Martin R., Gross P., Bogeat-Triboulot M.B., Temperature effects on hydraulic conductance and water relations of Quercus robur L., J. Exp. Bot. 51 (2000a) 1255-1259.
  26. Cochard H., Bodet C., Améglio T., Cruiziat P., Cryo-Scanning Electron Microscopy Observations of Vessel Content during Transpiration in Walnut Petioles. Facts or Artifacts? Plant Physiol. 124 (2000b) 1-12.
  27. Cochard H., Lemoine D., Améglio T., Granier A., Mechanisms of xylem recovery from winter embolism in Fagus sylvatica, Tree Physiol. 21 (2001) 27-33.
  28. Cochard H., Coll L., Le Roux X., Améglio T., Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut, Plant Physiol. 128 (2002) 282-290.
  29. Comstock J.P., Sperry J.S., Theoretical considerations of optimal conduit length for water transport in vascular plants, New Phytol. 148 (2000) 195-218.
    [29bis] Comstock J.P., Hydraulic and chemical signalling in the control of stomatal conductance and transpiration, J. Exp. Bot. 53 (2002) 195-200.
  30. Cortes P.M., Sinclair T.R., The role of osmotic potential in spring sap flow of mature sugar maple trees Acer saccharum Marsh., J. Exp. Bot. 36 (1985) 12-24.
  31. Crombie D.S., Hipkins M.F., Milburn J.A., Gas penetration of pit membranes in the xylem of Rhododendron as the cause of acoustically detectable sap cavitation, Aust. J. Plant Physiol. 12 (1985) 445-453.
  32. Cruiziat P., Quelques réflexions concernant l'étude du mécanisme de transfert de l'eau chez les végétaux, Actes du IVème séminaire de l'école de Biologie Théorique, Solignac 4-7/06/1984, Éditions du CNRS, Paris, 1985, pp. 241-251.
  33. Cruiziat P., Tyree M.H., La montée de la sève dans les arbres, La Recherche 21 (1990) 406-414.
  34. Dainty J., Water relations of plant cells, in: Luttge U., Pitman M.G. (Eds.), Transport in plants, II. Part A. Cells, Encyclopedia of plant physiology, Vol. 2A, Springer-Verlag, Berlin, 1976, pp.12-35.
  35. Davis S.D., Sperry J.S., Hacke G., The relationship bewteen xylem conduit diameter and cavitation caused by freezing, Am. J. Bot. 86 (1999) 1367-1372.
  36. Deleuze C., Pour une dendrométrie fonctionnelle : essai sur l'intégration de connaissances écophysiologiques dans les modèles de production ligneuse, Thèse de Doctorat, Université Claude Bernard, Lyon 1, 1996, 305 p.
  37. Dixon H.H., Joly J., On the ascent of sap, Philos. Trans. R. Soc. London, Ser. Biol. Sci. 186 (1894) 563-576.
  38. Dixon H.H., Transpiration and the ascent of sap in plants, Mac Millan, London, 1914, 216 p.
  39. Doussan C., Vercambre G., Pagès L., Water uptake by two constrasting root systems (maize, peach tree): results from a model of hydraulic architecture, Agronomie 19 (1999) 255-263.
    [39bis] Engelbrecht B.M.J., Velez V., Tyree M.T., Hydraulic conductance of two co-occuring netropical understory shrubs with different habitat preference, Ann. For. Sci. 57 (2000) 201-208.
  40. Ewers F.W., Zimmermann M.H., The hydraulic architecture of eastern hemlock (Tsuga canadensis), Can. J. Bot. 62 (1984a) 940-946.
  41. Ewers F.W., Zimmermann M.H., The hydraulic architecture of balsam fir (Abies balsamea), Physiol. Plant. 60 (1984b) 453-458.
  42. Ewers F.W., Xylem structure and water conduction in conifer trees, dicot trees, and lianas, IAWA J. 6 (1985) 309-317.
  43. Ewers F.W., Cruiziat P., Measuring water transport and storage, in: Lassoie J.P., Hinckley T.M. (Eds.), Techniques and approaches in forest tree ecophysiology, CRC Press, Boca Raton, Florida, USA, 1991, pp. 91-115.
  44. Ewers F.W., Améglio T., Cochard H., Beaujard F., Martignac M., Vandame M., Bodet C., Cruiziat P., Seasonal variation of xylem pressure in walnut trees: root and stem pressure, Tree Physiol. 21 (2001) 1123-1132.
  45. Farrar J.F., Minchin P.E.H., Carbon partitioning in split-root systems of barley: relation to metabolism, J. Exp. Bot. 42 (1991) 1261-1269.
  46. Fujii T., Hatano Y., The LDPE resin-casting method applied to vessel characterisation, IAWA J. 21 (2000) 347-359.
  47. Gradmann H., Untersuchungen über die Wasserverhältnisse des Bodens als Grundlage des Pflanzenwachstums. I., Jahrb. wiss. Bot. 69 (1928) 1-100.
  48. Granier A., Evaluation of transpiration in Douglas fir stand by means of sap flow measurements, Tree Physiol. 3 (1987) 309-320.
  49. Granier A., Anfodillo T., Sabatti M., Cochard H., Dreyer E., Tomasi M., Valentini R., Bréda N., Axial and radial water flow in the trunk of oak trees: a quantitative and qualitative analysis, Tree Physiol. 14 (1994) 1383-1396.
  50. Hacke U.G., Sauter J.J., Vulnerability of xylem to embolism in relation to leaf water potential and stomatal conductance in Fagus sylvatica f. purpurea and Populus balsamifera, J. Exp. Bot. 46 (1995) 1177-1183.
  51. Hacke U.G., Sperry J.S., Pittermann J., Drought experience and cavitation resistance in six shrubs from the Great Basin Utah, Basic Appl. Ecol. 1 (2000a) 31-41.
  52. Hacke U.G., Sperry J.S., Ewers B.E., Ellsworth D.S., Schäfer K.V.R., Oren R., Influence of soil porosity on water use in Pinus taeda, Oecologia 124 (2000b) 495-505.
  53. Hacke U.G., Sperry J.S., Pockmann W.T., Davis S.D., Mc Culloh K.A., Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure, Oecologia 126 (2001) 457-461.
  54. Hallé F., Oldeman R.A.A., Tomlinson P.B., Tropical trees and forests. An architectural analysis, Springer-Verlag, Berlin, DEU, 1978, 441 p.
  55. Holbrook N.M., Zwieniecki M.A., Embolism repair and xylem tension. Do we need a miracle? Plant Physiol. 120 (1999) 7-10.
  56. Huber B., Weitere quantitative Untersuchungen über des Wasserleitung System der Pflanzen, Jahrb. wiss. Bot. 67 (1928) 877-959.
  57. Huber B., Die physiologische Bedeutung der Ring- und Zerstreutporigkeit, Ber. Dtsch. Bot. Ges. 53 (1935) 711-719.
  58. Jarvis P.G., Water transfer in plants, in: De Vries A., Afgan N.H. (Eds.), Heat and mass transfer in the biosphere, Part I. Transfer processes in the plant environment, Seminar, International Centre for Heat and Mass Transfer, Dubrovnik, (YUG), 1974, John Wiley Scripta Book Co. Washington DC, USA, 1975, pp. 369-394.
  59. Johnson L.P.V., Physiological studies on sap flow in the sugar maple Acer saccharum Marsh, Can. J. Res. C. Bot. Sci. 23 (1945) 192-197.
  60. Johnson R.W., Tyree M.T., Dixon M.A., A requirement for sucrose in xylem sap flow from dormant maple trees, Plant Physiol. 84 (1987) 495-500.
  61. Jones H.G., Sutherland R.A., Stomatal control of xylem embolism, Plant Cell Environ. 18 (1991) 189-196.
  62. Kirkham M.B., Physical model of water in a split-root system, Plant Soil 75 (1983) 153-168.
  63. Kramer P.J., Boyer J., Water relations of plants and soils, Academic Press, New York, USA, 1995, 495 p.
  64. Langan S.J., Ewers F.W., Davis S.D., Xylem dysfunction caused by water stress and freezing in two species of co-occurring chaparral shrubs, Plant Cell Environ. 20 (1997) 425-437.
  65. Lemoine D., Granier A., Cochard H., Mechanism of freeze-induced embolim in Fagus sylvatica L., Trees 13 (1999) 206-210.
  66. Lewis A.M., Harnden V.D., Tyree M.T., Collapse of water-stress emboli in the tracheids of Thuja occidentalis L., Plant Physiol. 106 (1994) 1639-1646.
  67. Linton M.J., Nobel P.S., Loss of water transport capacity due to xylem cavitation in roots of two CAM succulents, Am. J. Bot. 11 (1999) 1533-1543.
  68. Lu P., Écophysiologie et réaction à la sécheresse de trois espèces de conifères (Abies alba Miller, Picea abies (L) Karsten et Pinus sylvestris L.) : effet de l'âge, Thèse de Doctorat, Université de Nancy I, 1992, 116 p.
  69. Lu P., Biron P., Granier A., Cochard H., Water relations of adult Norway spruce (Picea abies (L) Karst) under soil drought in the Vosges mountains: Whole-tree hydraulic conductance, xylem embolism and water loss regulation, Ann. Sci. For. 53 (1996) 113-121.
  70. Mackay J.F.G., Weatherley P.E., The effects of transverse cuts through the stems of transpiring woody plants on water transport and stress in the leaves, J. Exp. Bot. 24 (1973) 15-28.
  71. Mäkelä A., Implications of the pipe model theory on dry matter partitioning and heigth in individual trees, J. Theor. Biol. 33 (1986) 103-120.
  72. Mäkelä A., Modeling structural-functional relationships in whole-tree growth: resource allocation, in: Dixon R.K., Meldahl R.S., Ruark G.A., Warren W.G. (Eds.), Process Modeling of Forest Growth responses to environmental stress, Timber Press, Portland, Oregon, USA, 1990, pp. 81-95.
  73. Marvin J.W., Greene M.T., Temperature induced sap flow in excised stems of Acer, Plant Physiol. 26 (1951) 565-580.
  74. Marvin J.W., The physiology of maple sap flow, in: Thimann K.V. (Ed.), The Physiology of Forest Trees, Ronald Press, New York, USA, 1958, pp. 95-124.
  75. Marvin J.W., Morselli M.F., Laing F.M., Rapid low temperature hydrolysis of starch to sugars in maple stems and maple tissue cultures, Cryobiology 8 (1967) 339-351.
  76. Martre P., Cochard H., Durand J.L., Hydraulic architecture and water flow in growing grass tillers (Festuca arundinacaea Schreb.), Plant Cell Environ. 24 (2001a) 65-76.
  77. Martre P., North G.B., Nobel P.S., Hydraulic conductance and mercury-sensitive water transport for roots of Opuntia acanthocarpa in relation to soil drying and rewetting, Plant Physiol. 126 (2001b) 352-362.
  78. Mencuccini M., Comstock J., Vulnerability to cavitation in populations of two desert species, Hymenoclea salsola and Ambrosia dumosa, from different climatic regions, J. Exp. Bot. 48 (1997) 1323-1334.
  79. Milburn J.A., The conduction of sap. I. Water conduction and cavitation in water stressed leaves, Planta 65 (1966) 34-42.
  80. Milburn J.A., O'Malley P.E.R., Freeze-induced sap absorption in Acer pseudoplatanus: a possible mechanism, Can. J. Bot. 62 (1984) 2101-2106.
  81. Milburn J.A., Cavitation and embolisms in xylem conduits, in: Raghavendra A.S. (Ed.), Physiology of Trees, John Wiley & Sons, Inc., New York, USA, 1991, pp. 163-174.
  82. Milburn J.A., Sap ascent in vascular plants: challengers to the cohesion theory ignore the significance of immature xylem and recycling of Münch water, Ann. Bot.-London 78 (1996) 399-407.
  83. Nadezhdina N., CCermak J., Responses of sap flow rate along tree stem and coarse root radii to changes of water supply, in: Stokes A. (Ed.), The supporting roots of trees and woody plants: form, function and physiology, International meeting, 20-24/07/1998, Bordeaux, France, Partly reprinted from Plant Soil 217 (1999) pp. 227-238.
    [83 bis] Nardini A., Salleo S., Tyree M.T., Influence of ectomycrrhizas formed by Tuber melanosporum Vitt. on hydraulic conductance and water relations of Quercus ilex L. seedlings, Ann. For. Sci. 57 (2000) 305-312.
  84. Nikinmaa E., Analyses of the growth of scots pine: matching structure with function, D. sc. thesis, Acta For. Fenn. 235, 1992, 68 p.
  85. Nobel P.S., Physicochemical and environmental plant physiology, 2nd ed., Academic Press, San Diego, CA, USA, 1999, 474 p.
  86. North G.B., Nobel P.S., Changes in hydraulic conductivity and anatomy caused by drying and rewetting roots of Agave deserti (Agavaceae), Am. J. Bot. 78 (1991) 906-915.
  87. O'Malley P.E.R., Xylem sap flow and pressurization in Acer pseudoplatanus L., Ph.D. thesis, Dept of Botany, University of Glasgow, Scotland, UK, 1979, 149 p.
  88. O'Malley P.E.R., Milburn J.A., Freeze-induced fluctuations in xylem sap pressure in Acer pseudoplatanus, Can. J. Bot. 61 (1983) 3100-3106.
  89. Pallardy S.G., Hydraulic architecture and conductivity: an overview, in: Kreeb K.H., Richter H., Hinckley T.M. (Eds.), Structural and functional responses to environmental stresses: water shortage, 14 international botanical Congress, Berlin, DEU, 1987/07/24-08/01, SPB Academic Publishing, The Hague, NLD, 1989, pp. 3-19.
  90. Pati no S., Tyree M.T., Herre E.A., Comparison of hydraulic architecture of woody plants of differing phylogeny and growth form with special reference to free-standing and hemi-epiphytic Ficus species from Panama, New Phytol. 129 (1995) 125-134.
  91. Perttunen J., Sievänen R., Nikinmaa H., Salminen H., Saarenmaa H., Väkevä J., LIGNUM: A tree model based on simple structural units, Ann. Bot.-London, 77 (1996) 87-98.
  92. Pickard W.F., The ascent of sap in plants, Prog. Biophys. Mol. Biol. 37 (1981) 181-229.
  93. Pickard W.F., How might a tracheary element which is embolized by day be healed by night, J. theor. Biol. 141 (1989) 259-279.
  94. Pockman W.T., Sperry J.S., Freezing-induced xylem cavitation and the northern limit of Larrea tridentata, Oecologia 109 (1997) 19-27.
  95. Pockman W.T., Sperry J.S., Vulnerability to xylem cavitation and the distribution of Sorona Desert Vegetation, Am. J. Bot. 87 (2000) 1287-1299.
  96. Ritman K.T., Milburn J.A., Acoustic emissions from plants. Ultrasonic and audible compared, J. Exp. Bot. 39 (1988) 1237-1248.
  97. Roach W.A., Plant injection as a physiological method, Ann. Bot. 3 (1939) 155-226.
  98. Rood S.B., Pati no S., Coombs K., Tyree M., Branch sacrifice: cavitation-associated drought adaptation of riparian cottonwoods, Trees 14 (2000) 248-257.
  99. Ryan M.G., Yoder B., Hydraulic Limits to Tree Height and Tree Growth, Bioscience 47 (1997) 235-242.
  100. Salleo S., Nardini A., Pitt F., Lo Gullo M., Xylem cavitation and hydraulic control of stomatal conductance in Laurel (Laurus nobilis L.), Plant Cell Environ. 23 (2000) 71-79.
  101. Sauter J.J., Maple, McGraw-Hill yearbook of science and technology, McGraw-Hill Publ. New York, USA, 1974, pp. 280-281.
  102. Shinozaki K., Yoda K., Hozumi K., Kira T., A quantitative analysis of plant form. The pipe model theory. I. Basic analyses, Jap. J. Ecol. 14 (1964a) 97-132.
  103. Shinozaki K., Yoda K., Hozumi K., Kira T., A quantitative analysis of plant form. The pipe model theory. II. Further evidence of the theory and its implications in forest ecology, Jap. J. Ecol. 14 (1964b) 133-139.
  104. Sperry J.S., Relationship of xylem embolism to xylem pressure potential, stomatal closure, and shoot morphology in the palm Rhapis excelsa, Plant Physiol. 80 (1986) 110-116.
  105. Sperry J.S., Holbrook N.M., Zimmermann M.H., Tyree M.T., Spring filling of xylem vessels in wild grapevine, Plant Physiol. 83 (1987) 414-417.
  106. Sperry J.S., Tyree M.T., Mechanism of water stress-induced xylem embolism, Plant Physiol. 88 (1988) 581-587.
  107. Sperry J.S., Donnelly J.R., Tyree M.T., A method for measuring hydraulic conductivity and embolism in xylem, Plant Cell Environ. 11 (1988a) 35-40.
  108. Sperry J.S., Donnelly J.R., Tyree M.T., Seasonal occurrence of xylem embolism in sugar maple (Acer saccharum), Am. J. Bot. 75 (1988b) 1212-1218.
  109. Sperry J.S., Tyree M.T., Water-stress-induced xylem embolism in three species of conifers, Plant Cell Environ. 13 (1990) 427-436.
  110. Sperry J.S., Sullivan J.E.M., Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species, Plant Physiol. 100 (1992) 605-613.
  111. Sperry J.S., Saliendra N.Z., Intra- and inter-plant variation in xylem cavitation in Betula occidentalis, Plant Cell Environ. 17 (1994) 1233-1241.
  112. Sperry J.S., Nichols K.L., Sullivan J.E.M., Eastlack S.E., Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska, Ecology 75 (1994) 1736-1752.
  113. Sperry J.S., Saliendra N.Z., Pockman W.T., Cochard H., Cruiziat P., Davis S.D., Ewers F.W., Tyree M.T., New evidence for large negative xylem pressures and their measurement by the pressure chamber method, Plant Cell Environ. 19 (1996) 427-436.
  114. Sperry J.S., Adler F.R., Campbell G.S., Comstock J.C., Limitation of plant water use by rhizosphere and xylem conductances: results from a model, Plant Cell Environ. 21 (1998) 347-359.
  115. Sperry J.S., Hydraulic constraints on plant gas exchange, Agric. For. Meteorol. 104 (2000) 13-23.
  116. Steudle E., Methods for studying water relations of plant cells and tissues, in: Hashimoto Y., Nonami H., Kramer P.J., Strain B.R. (Eds.), Measurement techniques in plant sciences, Academic Press, San Diego, CA, USA, 1990, pp. 113-150.
  117. Steudle E., Peterson C.A., How does water get through roots?, J. Exp. Bot. 49 (1998) 775-788.
  118. Steudle E., The cohesion-tension theory mechanism and the acquisition of water by plant roots, Annu. Rev. Plant Physiol. Plant Mol. Biol. 52 (2001) 847-875.
  119. Stevens C.L., Eggert R.L., Observations on the causes of flow of sap in red maple, Plant Physiol. 20 (1945) 636-648.
  120. Tardieu F., Zhang J., Katerji N., Bethenod O., Palmer S., Davies W.J., Xylem ABA controls the stomatal conductance of field-grown maize subjected to soil compaction or soil drying, Plant Cell Environ. 15 (1992) 193-197.
  121. Tyree M.T., Jarvis P.G., Water in tissues and cells, in: Lange O.L., Nobel P.S., Osmond C.B., Ziegler H. (Eds.), Physiological plant ecology II. Water relations and carbon assimilation, Encyclopedia of plant physiology, Vol. 12B, Springer-Verlag, New York, USA, 1982, pp. 35-77.
  122. Tyree M.T., Maple sap uptake, exudation and pressure changes correlated with freezing exotherms and thawing endotherms, Plant Physiol. 73 (1983) 277-285.
  123. Tyree M.T., A dynamic model for water flow in a single tree: evidence that models must account for hydraulic architecture, Tree Physiol. 4 (1988) 195-217.
  124. Tyree M.T., Sperry J.S., Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model, Plant Physiol. 88 (1988) 574-580.
  125. Tyree M.T., Sperry J.S., Vulnerability of xylem to cavitation and embolism, Annu. Rev. Plant Physiol. Plant Mol. Biol. 40 (1989a) 19-38.
  126. Tyree M.T., Sperry J.S., Characterization and propagation of acoustic emission signals in woody plants: towards an improved acoustic emission counter, Plant Cell Environ. 12 (1989b) 371-382.
  127. Tyree M.T., Ewers F.W., The hydraulic architecture of trees and other woody plants, New Phytol. 119 (1991) 345-360.
  128. Tyree M.T., Synderman D.A., Wilmot T.R., Machado J.L., Water relations and hydraulic architecture of a tropical tree (Schefflera morototoni). Data, models and a comparison with two temperate species (Acer saccharum and Thuja occidentalis), Plant Physiol. 96 (1991) 1105-1113.
  129. Tyree M.T., Yang S.C., Hydraulic conductivity recovery versus water pressure in xylem of Acer saccharum, Plant Physiol. 100 (1992) 669-676.
  130. Tyree M., Alexander J.D., Hydraulic conductivity of branch junctions in three temperate tree species, Trees 7 (1993) 156-159.
  131. Tyree M.T., Cochard H., Cruiziat P., Sinclair B., Ameglio T., Drought-induced leaf shedding in walnut. Evidence for vulnerability segmentation, Plant Cell Environ. 16 (1993a) 879-882.
  132. Tyree M.T., Sinclair B., Lu P., Granier A., Whole shoot hydraulic resistance in Quercus species measured with a new high-pressure flowmeter, Ann. Sci. for. 50 (1993b) 417-423.
  133. Tyree M.T., Davis S.D., Cochard H., Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA J. 15 (1994) 335-346.
  134. Tyree M.T., Cochard H., Summer and winter embolism in oak: impact on water relations, Ann. Sci. for. 53 (1996) 173-180.
  135. Tyree M.T., The cohesion-tension theory of sap ascent: current controversies, J. Exp. Bot. 48 (1997) 1753-1765.
  136. Tyree M.T., Velez V., Dalling J.W., Growth dynamics of root and shoot hydraulic conductance in seedlings of five neotropical tree species: scaling to show possible adaptations light regimes, Oecologia 114 (1998) 293-298.
  137. Tyree M.T., Water relations and hydraulic architecture, in: Pugnaire F.I., Valladares F. (Eds.), Handbook of Functional Plant Ecology, Marcel Dekker Inc., New York, USA, 1999, pp. 221-268.
  138. Tyree M.T., Sobrado M.A., Stratton L.J., Becker P., Diversity of hydraulic conductances in leaves of temperate and tropical species: possible causes and consequences, J. Trop. For. Sci. 11 (1999a) 47-60.
  139. Tyree M.T., Salleo S., Nardini A., Lo Gullo M.A., Mosca R., Refilling of embolized vessels in young stems of laurel. Do we need a new paradigm? Plant Physiol. 120 (1999b) 11-21.
  140. Valancogne C., Nasr Z., A heat balance method for measuring sap flow in small trees, in: Borghetti M., Grace J., Raschi A. (Eds.), Water transport in plants under stress, Cambridge University Press, Cambridge, UK, 1991, pp. 166-173.
  141. Valentine H.T., A carbon balance model of stand growth: a derivation employing pipe-model theory and the self-thinning rule, Ann. Bot.-London 62 (1988) 389-396.
  142. Valentine H.T., Gregoire T.G., Burkhart H.E., Hollinger D.Y., A stand level model of carbon allocation and growth, calibrated for loblolly pines, Can. J. For. Res. 27 (1997) 579-585.
  143. Van Den Honert T.H., Water transport in plants as a catenary process, in: Interaction of water and porous materials, Discuss. Faraday Soc. 3 (1948) 146-153.
  144. Van Ieperen W., van Meeteren U., van Gelder H., Fluid composition influences hydraulic conductance of xylem conduits, J. Exp. Bot. 51 (2000) 769-776.
  145. Waisel Y., Liphschitz N., Kuller Z., Patterns of water movement in trees and shrubs, Ecology 53 (1972) 520-523.
  146. Wang J., Ives N.E., Lechowicz M.J., The relation of foliar phenology to xylem embolism in trees, Funct. Ecol. 6 (1992) 469-475.
  147. West G.B., Brown J.H., Enquist B.J., A general model for the structure and allometry of plant vascular systems, Nature 400 (1999) 664-667.
  148. Wiegand K.M., Pressure and flow of sap in the maple, Am. Nat. 40 (1906) 409-453.
  149. Yang S., Tyree M.T., A theoretical model of hydraulic conductivity recovery from embolism with comparison to experimental data on Acer saccharum, Plant Cell Environ. 15 (1992) 633-643.
  150. Yang S., Tyree M.T., Hydraulic architecture of Acer saccharum and A. rubrum. Comparison of branches to whole trees and the contribution of leaves to hydraulic resistance, J. Exp. Bot. 45 (1994) 179-186.
  151. Zhu X.B., Cox R.M., Arp P.A., Effects of xylem cavitation and freezing injury on dieback of yellow birch (Betula alleghaniensis) in relation to a simulated winter thaw, Tree Physiol. 20 (2000) 541-547.
  152. Zimmermann M.H., Brown C.L., Trees structure and function, Springer-Verlag, New York, USA, 1977, 336 p.
  153. Zimmermann M.H., Hydraulic architecture of some diffuse-porous trees, Can. J. Bot. 56 (1978) 2286-2295.
  154. Zimmermann M.H., Xylem structure and the ascent of sap, Springer-Verlag, New York, USA, 1983, 143 p. A new edition, completed by M. Tyree, should appear in 2002.
  155. Zwieniecki M.A., Holbrook N.M., Diurnal variation in xylem hydraulic conductivity in white ash (Fraxinus americana L.), red maple (Acer rubrum L.) and red spruce (Picea rubens Sarg.), Plant Cell Environ. 18 (1998) 1173-1180.
  156. Zwieniecki M.A., Melcher P.J., Holbrook N.M., Hydrogel control of xylem hydraulic resistance in plants, Science 291 (2001) 1059-1062.


Copyright INRA, EDP Sciences