Free access
Issue
Ann. For. Sci.
Volume 60, Number 2, March 2003
Page(s) 97 - 104
DOI http://dx.doi.org/10.1051/forest:2003001

References

  1. Boutelje J.B., On the anatomical structure, moisture content, density, shrinkage and resin content of the wood in and around knots in Swedish pine (Pinus sylvestris L.), and in Swedish spruce (Picea abies Karst.), Sven. Papp.tidn. 69 (1966) 1-10.
  2. Brendel O., Scots Pine: phenotypic diversity in remnant native stands as indicated by gas exchange, stable isotope and ring width measurements, Ph.D. Thesis, University of Newcastle upon Tyne, 1998.
  3. Brendel O., Does bulk-needle $\delta^{13}$C reflect short-term discrimination?, Ann. For. Sci. 58 (2001) 113-141.
  4. Brendel O., Iannetta P.P.M., Stewart D., A rapid and simple method to isolate pure alpha-cellulose, Phytochem. Anal. 11 (2000) 7-10.
  5. Brugnoli E., Hubick K.T., von Caemmerer S., Wong S.J., Farquhar G.D., Correlation between the carbon isotope discrimination in leaf starch and sugars of C3 plants and the ratio of intercellular and atmospheric partial pressures of carbon dioxide, Plant Physiol. 88 (1988) 1418-1424.
  6. Cernusak L.A., Marshall J.D., Responses of foliar delta C-13, gas exchange and leaf morphology to reduced hydraulic conductivity in Pinus monticola branches, Tree Physiol. 21 (2001) 1215-1222.
  7. Craig H., Isotopic standards for carbon and oxygen and correction factors for massspectrometric analysis of carbon dioxide, Geochim. Cosmochim. Acta 12 (1957) 133-149.
  8. Deines P., The Isotopic composition of Reduced Organic Carbon, in: Fritz P., Fontes J.Ch. (Eds.), Handbook of Environmental Isotope Geochemistry, Elsevier, Amsterdam, 1980, pp. 329-406.
  9. Dupouey J.-L., Using $\delta^{13}$C in tree rings as a bio-indicator of environmental variations and ecophysiological changes in tree functioning, in: Frenzel B. (Ed.), Problems of stable isotopes in tree-rings, lake sediments and peat-bogs as climatic evidence for the Holocene, G. Fischer, Stuttgart, 1995, pp. 97-104.
  10. Farquhar G.D., O'Leary M.H., Berry J.A., On the relationship between carbon isotope discrimination and the intercellular CO2-concentration in leaves, Aust. J. Plant Physiol. 9 (1982) 121-137.
  11. Farquhar G.D., Richards P.A., Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes, Aust. J. Plant Physiol. 11 (1984) 539-552.
  12. Fischer C., Höll W., Food reserves of Scots pine (Pinus sylvestris L.). I. Seasonal changes in the carbohydrate and fat reserves of pine needles, Trees 5 (1991) 187-195.
  13. Flanagan L.B., Johnsen K.H., Genetic variation in carbon isotope discrimination and its relationship to growth under field conditions in full-sib families of (Picea mariana, Can. J. For. Res. 25 (1995) 39-47.
  14. Gielen B., Jach M.E., Ceulemans R., Effects of season, needle age, and elevated atmospheric CO2 on chlorophyll fluorescence parameters and needle nitrogen concentration in Scots pine (Pinus sylvestris), Photosynth. 38 (2000) 29-35.
  15. Gleixner G., Danier H.-J., Werner R.A., Schmidt H.-L., Correlations between the 13C content of primary and secondary plant products in different cell compartments and that in decomposing basidiomycetes, Plant Physiol. 102 (1993) 1287-1290.
  16. Guehl J.-M., Fort C., Ferhi A., Differential response of leaf conductance, carbon isotope discrimination and water-use efficiency to nitrogen deficiency in maritime pine and pedunculate oak plants, New Phytol. 131 (1995) 149-157.
  17. Hansen J., Beck E., Seasonal-changes in the utilization and turnover of assimilation products in 8-year-old Scots pine (Pinus sylvestris L.) trees, Trees 8 (1994) 172-182.
  18. Jach M.E., Ceulemans R., Effects of season, needle age and elevated atmospheric CO2 on photosynthesis in Scots pine (Pinus sylvestris), Tree Physiol. 20 (2000) 145-157.
  19. Kocon J., Occurrence and structure of the reaction wood of the European larch (Larix europaea DC) and of Scots pine (Pinus sylvestris L.) investigated with X-ray diffraction and the electron scanning microscope, Ann. Wars. Agric. Univ. SGGW-AR., For. Wood Technol. 39 (1990) 71-78.
  20. Livingston N.J., Spittlehouse D.L., Carbon isotope fractionation in tree ring early and late wood in relation to intra-growing season water balance, Plant Cell Environ. 19 (1996) 768-774.
  21. Marshall J.D., Monserud R.A., Homeostatic gas-exchange parameters inferred from 13C/12C in tree rings of conifers, Oecol. 105 (1996) 13-21.
  22. Monteith J.L., Principles of Environmental Physics, Edward Arnold, London, 1973.
  23. Panek J.A., Correlations between stable carbon-isotope abundance and hydraulic conductivity in Douglas-fir across a climate gradient in Oregon, USA, Tree Physiol. 16 (1996) 747-755.
  24. Panek J.A., Waring R.H., Carbon isotope variation in Douglas-fir foliage: improving the $\delta^{13}$C-climate relationship, Tree Physiol. 15 (1995) 657-663.
  25. Penman H.L., Natural evaporation from open water, bare soil and grass, Proc. Roy. Soc. London A193 (1948) 120-145.
  26. Picon C., Guehl J.-M., Ferhi A., Leaf gas exchange and carbon isotope composition responses to drought in a drought-avoiding (Pinus pinaster) and a drought-tolerant (Quercus petraea) species under present and elevated atmospheric CO2 concentrations, Plant Cell Environ. 19 (1996) 182-190.
  27. Sanio C., Anatomie der gemeinen Kiefer (Pinus silvestris L.), Jahrb. wiss. Bot. 9 (1873) 50-126.
  28. Sokal R.R., Rohlf F.J., Biometry, The principles and practice of statistics in biological research, W.H. Freeman and Co., New York, 1995.
  29. Timell T.E., Karl Gustav Sanio and the first scientific description of compression wood, IAWA Bulletin 1 (1980) 147-152.
  30. Timell T.E., Recent progress in the chemistry and topochemistry of compression wood, Wood Sci. Technol. 16 (1982) 83-122.
  31. van den Honert T.H., Water transport in plants as a catenary process, Discussions of the Faraday Society 3 (1948) 146-153.
  32. Walcroft A.S., Silvester W.B., Grace J.C., Carson S.D., Waring R.H., Effects of branch length on carbon isotope discrimination in Pinus radiata, Tree Physiol. 16 (1996) 281-286.
  33. Waring R.H., Silvester W.B., Variation in foliar $\delta^{13}$C values within the crowns of Pinus radiata trees, Tree Physiol. 14 (1994) 1203-1213.
  34. Warren C.R., Adams M.A., Water availability and branch length determine $\delta^{13}$C in foliage of Pinus pinaster, Tree Physiol. 20 (2000) 637-643.
  35. Wilson A.T., Grinsted M.J., 12C/13C in cellulose and lignin as palaeo thermometers, Nature 265 (1977) 133-135.
  36. Yasue K., Funada R., Kobayashi O., Ohtani J., The effects of tracheid dimensions on variations in maximum density of (Picea glehnii and relationships to climatic factors, Trees 14 (2000) 223-229.
  37. Zhang J., Marshall J.D., Population differences in water-use efficiency of well-watered and water-stressed western larch seedlings, Can. J. For. Res. 24 (1994) 92-99.

Abstract

Copyright INRA, EDP Sciences