Free access
Ann. For. Sci.
Volume 61, Number 6, September 2004
Page(s) 515 - 523
References of Ann. For. Sci. 61 515-523
  1. Asner G.P., Biophysical and biochemical sources of variability in canopy reflectance, Remote Sens. Environ. 64 (1998) 234-253 [CrossRef].
  2. Asner G.P., Heidebrecht K.B., Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: comparing multispectral and hyperspectral observations, Int. J. Remote Sens. 23 (2002) 3939-3958 [CrossRef].
  3. Bielski C.M., Dube P., Cavayas F., Marceau D.J., S-space: a new concept for information extraction from imaging spectrometer data, Int. J. Remote Sens. 23 (2002) 2005-2022 [CrossRef].
  4. Brown P.J., Haque M.S., Discrimination with many variables, J. Am. Stat. Assoc. 94 (1999) 1320-1329 [MathSciNet].
  5. Bubier J.L., Rock B.N., Crill P.M., Spectral reflectance measurements of Boreal wetland and forest mosses, J. Geophys. Res. Atmosph. 102 (1997) 29483-29494.
  6. Campbell N.A., Robust procedures in multivariate analysis. I. Robust covariance estimation, Appl. Stat. 29 (1980) 231-237.
  7. Carter G.A., Responses of leaf reflectances to plant stress, Am. J. Bot. 80 (1993) 243.
  8. Casella G., Berger R.L., Statistical Inference, Duxbury, London, 2002.
  9. Chapin F.S.I., Integrated responses of plants to stress, BioScience 41 (1991) 36.
  10. Chen Z.K., Elvidge C.D., Groeneveld D.P., Monitoring seasonal dynamics of arid land vegetation using AVIRIS data, Remote Sens. Environ. 65 (1998) 255-266 [CrossRef].
  11. Coops N., Dury S., Smith M.L., Martin M., Ollinger S., Comparison of green leaf eucalypt spectra using spectral decomposition, Aust. J. Bot. 50 (2002) 567-576 [CrossRef].
  12. Curcio J.A., Petty C.C., The near infrared absorption spectrum of liquid water, J. Opt. Soc. Am. 41 (1951) 302-304.
  13. Datt B., Identification of green and dry vegetation components with a cross-correlogram spectral matching technique, Int. J. Remote Sens. 21 (2000) 2133-2139 [CrossRef].
  14. Draper N.R., Smith H., Applied Regression Analysis, Wiley, New York, 1981.
  15. Efron B., Tibshirani R.J., An introduction to the bootstrap, Chapman & Hall, Boca Raton, 1993.
  16. Ferretti M., Forest health assessment and monitoring - issues for consideration, Environ. Monit. Assess. 48 (1997) 45-72 [CrossRef].
  17. Fourty T., Baret F., On spectral estimates of fresh leaf biochemistry, Int. J. Remote Sens. 19 (1998) 1283-1297 [CrossRef].
  18. Fraley C., Raftery A.E., Model-based clustering, discriminant analysis, and density estimation, J. Am. Stat. Assoc. 97 (2002) 611-631 [CrossRef] [MathSciNet].
  19. Fuentes D.A., Gamon J.A., Qiu H.L., Sims D.A., Roberts D.A., Mapping Canadian boreal forest vegetation using pigment and water absorption features derived from the AVIRIS sensor, J. Geophys. Res. Atmosph. 106 (2001) 33565-33577.
  20. Gastellu-Etchegorry J.P., Bruniquel-Pinel V., A modeling approach to assess the robustness of spectrometric predictive equations for canopy chemistry, Remote Sens. Environ. 76 (2001) 1-15 [CrossRef].
  21. Giertych M.J., Karolewski P., De Temmerman L.O., Foliage age and pollution alter content of phenolic compounds and chemical elements in Pinus nigra needles, Water Air Soil Pollut. 110 (1999) 363-377 [CrossRef].
  22. Härdle W., Mammen E., Müller M., Testing parametric versus semiparametric modeling in generalized linear models, J. Am. Stat. Assoc. 93 (1998) 1461-1474 [MathSciNet].
  23. Harvey A.C., Time series models, Phillip Allan, Oxford, 1981.
  24. Howard J.A., Remote sensing of forest resources. Theory and application, Chapman & Hall, London, 1991.
  25. Jia X.P., Richards J.A., Progressive two-class decision classifier for optimization of class discriminations, Remote Sens. Environ. 63 (1998) 289-297 [CrossRef].
  26. Johnson L.F., Nitrogen influence on fresh-leaf NIR spectra, Remote Sens. Environ. 78 (2001) 314-320 [CrossRef].
  27. Ke C., Wang Y., Semiparametric nonlinear mixed-effects models and their applications, J. Am. Stat. Assoc. 96 (2002) 1272-1283.
  28. Kendall M.G., Stuart A., The advanced theory of statistics, Griffin, London, 1969.
  29. Lehmann E.L., Theory of Point Estimation, Wiley, New York, 1983.
  30. Longhi I., Sgavetti M., Chiari R., Mazzoli C., Spectral analysis and classification of metamorphic rocks from laboratory reflectance spectra in the 0.4-2.5 mm interval: a tool for hyperspectral data interpretation, Int. J. Remote Sens. 22 (2001) 3763-3782 [CrossRef].
  31. Lunetta R.S., Elvidge C.D., Remote sensing change detection. Environmental monitoring methods and applications, Taylor & Francis, London, 1999.
  32. Luther J., Carroll A.L., Development of an index of balsam fir vigor by foliar spectral reflectance, Remote Sens. Environ. 69 (1999) 241-252 [CrossRef].
  33. Maselli F., Definition of spatially variable spectral endmembers by locally calibrated multivariate regression analysis, Remote Sens. Environ. 75 (2001) 29-38 [CrossRef].
  34. McCulloch C.E., Searle S.R., Generalized, linear, and mixed models, Wiley, New York, 2001.
  35. McGwire K., Minor T., Fenstermaker L., Hyperspectral mixture modeling for quantifying sparse vegetation cover in arid environments, Remote Sens. Environ. 72 (2000) 360-374 [CrossRef].
  36. McLachlan G.J., Discriminant analysis and statistical pattern analysis, Wiley, New York, 1991.
  37. Melack J.M., Gastil M., Airborne remote sensing of chlorophyll distributions in Mono Lake, California, Hydrobiol. 466 (2001) 31-38 [CrossRef].
  38. Miller R.G. Jr., Simultaneous Statistical Inference, 2nd ed., Springer, New York, 1980.
  39. Nichol C.J., Huemmrich K.F., Black T.A., Jarvis P.G., Walthall C.L., Grace J., Hall F.G., Remote sensing of photosynthetic-light-use efficiency of Boreal forest, Agric. For. Meteorol. 101 (2000) 131-142 [CrossRef].
  40. Niemann K.O., Goodenough D.G., Bhogal A.S., Remote sensing of relative moisture status in old growth Douglas-fir, Int. J. Remote Sens. 23 (2002) 395-400 [CrossRef].
  41. Okin G.S., Roberts D.A., Murray B., Okin W.J., Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments, Remote Sens. Environ. 77 (2001) 212-225 [CrossRef].
  42. Pinheiro J.C., Bates D.M., Mixed-effects models in S and S-plus, Springer, New York, 2000.
  43. Pinkard E.A., Beadle C.L., Davidson N.J., Battaglia M., Photosynthetic responses of Eucalyptus nitens (Deane and Maiden) Maiden to green pruning, Trees-Struct. Funct. 12 (1998) 119-129.
  44. Pratt W.K., Digital Image Processing, Wiley, New York, 1991.
  45. Price J.C., An approach for analysis of reflectance spectra, Remote Sens. Environ. 64 (1998) 316-330 [CrossRef].
  46. Rahman A.F., Gamon J.A., Fuentes D.A., Roberts D.A., Prentiss D., Modeling spatially distributed ecosystem flux of Boreal forest using hyperspectral indices from AVIRIS imagery, J. Geophys. Res. Atmosph. 106 (2001) 33579-33591.
  47. Ramsay J.O., Silverman B.W., Functional data analysis, Springer, New York, 1997.
  48. Rencher A.C., Methods of multivariate analysis, Wiley, New York, 1995.
  49. Ripley B.D., Statistics, images, and pattern recognition, Can. J. Stat. 14 (1985) 83-111.
  50. Robert C.P., Casella G., Monte Carlo statistical methods, Springer, New York, 1999.
  51. Scott D.W., Multivariate density estimation: Theory, practice and visualization, Wiley, New York, 1992.
  52. Searle S.R., Matrix algebra useful for statistics, Wiley, New York, 1982.
  53. Sellin A., Morphological and stomatal responses of Norway spruce foliage to irradiance within a canopy depending on shoot age, Environ. Exp. Bot. 45 (2001) 115-131 [CrossRef] [PubMed].
  54. Suen P.H., Healey G., Invariant identification of material mixtures in airborne spectrometer data, J. Opt. Soc. Amer. A Opt. Image Sci. Vision 19 (2002) 549-557.
  55. Thenkabail P.S., Smith R.B., De Pauw E., Hyperspectral vegetation indices and their relationships with agricultural crop characteristics, Remote Sens. Environ. 71 (2000) 158-182 [CrossRef].
  56. Theseira M.A., Thomas G., Sannier C.A.D., An evaluation of spectral mixture modelling applied to a semi-arid environment, Int. J. Remote Sens. 23 (2002) 687-700 [CrossRef].
  57. Titterington D.M., Smith A.F.M., Makov U.E., Statistical analysis of finite mixture distributions, Wiley, Chichester, 1985.
  58. Trotter G.M., Whitehead D., Pinkney E.J., The photochemical reflectance index as a measure of photosynthetic light use efficiency for plants with varying foliar nitrogen contents, Int. J. Remote Sens. 23 (2002) 1207-1212 [CrossRef].
  59. Verbeke G., Lesaffre E., A linear mixed-effects model with heterogenity in the random-effects population, J. Am. Stat. Assoc. 91 (1996) 217-221.
  60. Vodacek A., Kremens R.L., Fordham A.J., Vangorden S.C., Luisi D., Schott J.R., Latham D.J., Remote optical detection of biomass burning using a potassium emission signature, Int. J. Remote Sens. 23 (2002) 2721-2726 [CrossRef].
  61. Wolfram S., The Mathematica Book, Wolfram Media / Cambridge University Press, Champaign, IL, 1999.
  62. Woodruff D.L., Rocke D.M., Computable robust estimation of multivariate location and shape in high dimension using compound estimators, J. Am. Stat. Assoc. 89 (1994) 888-899 [MathSciNet].
  63. Zeger S.L., Liang K.-Y., Albert P.S., Models for longitudinal data: A generalized estimating equation approach, Biometrics 44 (1988) 1049-1060 [PubMed] [MathSciNet].
  64. Zhang X.H., Chen C.H., New independent component analysis method using higher order statistics with application to remote sensing images, Opt. Eng. 41 (2002) 1717-1728 [CrossRef].