Free access
Issue
Ann. For. Sci.
Volume 63, Number 5, July-August 2006
Page(s) 507 - 510
DOI http://dx.doi.org/10.1051/forest:2006032
Published online 19 July 2006
References of  Ann. For. Sci. 63 (2006) 507-510
  1. Alméras T., Gril J., Yamamoto H., Modelling anisotropic strains in wood in relation to fibre boundary conditions, microstructure and maturation kinetics, Holzforschung 59 (2005) 347-353 [CrossRef].
  2. Alméras T., Thibaut A., Gril J., Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees, Trees 19 (2005) 457-467 [CrossRef].
  3. Archer R.R., Growth stresses and strains in trees, Springer-Verlag, Berlin Heidelberg New-York, 1986.
  4. Baillères H., Castan M., Monties B., Pollet B., Lapierre C., Lignin structure in Buxus sempervirens reaction wood, Phytochemistry 44 (1997) 35-39 [CrossRef].
  5. Barnett J.R., Jeronimidis G., Reaction wood, in: Barnett J.R., Jeronimidis G., Roberts A., Usherwood P.N.R. (Eds.), Wood quality and its biological basis, Blackwell Publishing, Oxford 2003, pp. 118-136.
  6. Boyd J.D., Tree growth stresses - Part V: Evidence of an origin in differentiation and lignification, Wood Sci. Technol. 6 (1972) 251-262 [CrossRef].
  7. Cave I.D., Theory of X-ray measurement of microfibril angle in wood, For. Prod. J. 16 (1966) 37-42.
  8. Cave I.D., Theory of X-ray measurement of microfibril angle in wood, Part 2: the diffraction diagram, Wood Sci. Technol. 31 (1997) 225-234.
  9. Chow K.Y., A comparative study of the structure and composition of tension wood in beech (Fagus sylvatica L.), Forestry 20 (1946) 62-77.
  10. Clair B., Jaouen G., Beauchêne J., Fournier M., Mapping radial, tangential and longitudinal shrinkages and its relation to tension wood in discs of the tropical tree Symphonia globulifera, Holzforschung 57 (2003) 665-671 [CrossRef].
  11. Clair B., Ruelle J., Thibaut B., Relationship between growth stresses, mechano-physical properties and proportion of fibre with gelatinous layer in chestnut (Castanea sativa Mill.), Holzforschung 57 (2003) 189-195 [CrossRef].
  12. Clair B., Ruelle J., Beauchêne J., Prevost M.F., Fournier M., Tension wood and opposite wood in 21 tropical rain forest species. 1. About the presence of G layer, IAWA J. 27 (2006) (in press).
  13. Clarke S.H., The distribution, structure and properties of tension wood in beech (Fagus sylvatica L.), J. For. 11 (1937) 85-91.
  14. Coutand C., Jeronimidis G., Chanson B., Loup C., Comparison of mechanical properties of tension and normal wood in Populus, Wood Sci. Technol. 38 (2004) 11-24 [CrossRef].
  15. Fournier M., Chanson B., Thibaut B., Guitard D., Mesure des déformations résiduelles de croissance à la surface des arbres, en relation avec leur morphologie. Observation sur différentes espèces, Ann. Sci. For. 51 (1994) 249-266.
  16. Fujita M., Saiki H., Harada H., Electron microscopy of microtubules and cellulose microfibrils in secondary wall formation of poplar tension wood fibers, Mokuzai Gakkaishi 20 (1974) 147-156.
  17. Jourez B., Riboux A., Leclercq A., Comparison of basic density and longitudinal shrinkage in tension wood and opposite wood in young stems of Populus euramericana cv. Ghoy when subjected to a gravitational stimulus, Can. J. For. Res. 31 (2001) 1676-1683 [CrossRef].
  18. Meylan B.A., The Influence of microfibril angle on the longitudinal shrinkage-moisture content relationship, Wood Sci. Technol. 6 (1972) 293-301 [CrossRef] [MathSciNet].
  19. Meylan B.A., Reaction wood in Pseudowintera colorata - A vessel-less dicotyledon, Wood Sci. Technol. 15 (1981) 81-92 [CrossRef].
  20. Onaka F., Studies on compression and tension wood, Wood Res. 1 (1949) 1-88.
  21. Ruelle J., Clair B., Beauchêne J., Prevost M.F., Fournier M., Tension wood and opposite wood in 21 tropical rain Forest species. 2. Comparison of some anatomical criteria, IAWA J. 27 (2006) (in press).
  22. Sassus F., Déformations de maturation et propriétés du bois de tension chez le hêtre et le peuplier : mesures et modèles, Ph.D. thesis, Engref, Montpellier, 1998.
  23. Sinnott E.W., Reaction wood and regulation of tree form, Am. J. Bot. 39 (1952) 69-78.
  24. Skaar C., Wood-water relations, Springer Verlag, Berlin, Heidelberg, New York, 1988.
  25. Thibaut B., Gril J., Growth stresses, in: Barnett J.R., Jeronimidis G.J., Roberts A., Usherwood P.N.R. (Eds.), Wood quality and its biological basis, Blackwell Publishing, Oxford 2003, pp. 137-156.
  26. Timell T.E., Compression wood in Gymnosperms, Vol. 1: Bibliography, historical background, determination, structure, chemistry, topochemistry, physical properties, origin,and formation of compression wood, Springer Verlag, Berlin, Heidelberg, New York, 1986.
  27. Wilson B.F., Archer R.R., Tree design: some biological solutions to mechanical problems, Bioscience 9 (1979) 293-298.
  28. Yamamoto H., Okuyama T., Yoshida M., Method for determining the mean microfibril angle of wood over a wide range by the improved Cave's method, Mokuzai Gakkaishi (1993) 375-381.
  29. Yamamoto H., Generation mechanism of growth stresses in wood cell walls: roles of lignin deposition and cellulose microfibril during cell wall maturation, Wood Sci. Technol. 32 (1998) 171-182.
  30. Yoshida M., Okuyama T., Techniques for measuring growth stress on the xylem surface using strain and dial gauges, Holzforschung 56 (2002) 461-467 [CrossRef].
  31. Yoshizawa N., Idei T., Some structural and evolutionnary aspects of compression wood tracheids, Wood Fiber Sci. 19 (1987) 343-352.
  32. Yoshizawa N., Satoh M., Yokota S., Idei T., Formation and structure of reaction wood in Buxus microphylla var. insulari Nakai, Wood Sci. Technol. 27 (1993) 1-10.