Free Access
Ann. For. Sci.
Volume 64, Number 5, July-August 2007
Page(s) 503 - 510
Published online 17 July 2007
References of  Ann. For. Sci. 64 (2007) 503-510
  1. Almeras T., Thibaut A., Gril J., Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees, Trees 19 (2005) 457-467 [CrossRef].
  2. Archer R.R., Growth stresses and strains in trees, Springer-Verlag, Berlin Heidelberg New-York, 1986.
  3. Badia M.A., Constant T., Mothe F., Nepveu G., Tension wood occurrence in three cultivars of Populus $\times$ euramericana. Part I: Inter-clonal and intra-tree variability of tension wood, Ann. For. Sci. 63 (2006) 23-30 [CrossRef] [EDP Sciences].
  4. Baillères H., Précontraintes de croissance et propriétés mécano-physiques de clones d'Eucalyptus (Pointe-Noire - Congo: hétérogénéités, corrélations et interprétations histologiques, Thèse en Sciences du Bois, Université de Bordeaux I, 1994.
  5. Baillères H., Chanson B., Fournier M., Tollier M.T., Monties B., Structure, composition chimique et retraits de maturation du bois chez les clones d'eucalyptus, Ann. Sci. For. 52 (1995) 157-172.
  6. Barnett J.R., Cellulose microfibril angle in the cell wall of wood fibres, Biol. Rev. 79 (2004) 461-472 [CrossRef].
  7. Bordonné P.A., Module dynamique et frottement intérieur dans le bois mesurés sur poutres flottantes en vibrations naturelles, Wood Science thesis, Institut National Polytechnique de Lorraine, 1989.
  8. Boyd J.D., Relationship between fibre morphology and shrinkage of wood, Wood Sci. Technol. 11 (1977) 3-22 [CrossRef].
  9. Brancheriau L., Bailleres H., Natural vibration analysis of clear wooden beams: a theoretical review, Wood Sci. Technol. 36 (2002) 345-365.
  10. Brancheriau L., Baillères H., Détienne P., Kronland R., Metzger B., Classifying xylophone bar materials by perceptual, signal processing and wood anatomy analysis, Ann. For. Sci. 63 (2006) 73-81 [CrossRef] [EDP Sciences].
  11. Clair B., Thibaut B., Shrinkage of the gelatinous layer of poplar and beech tension wood, IAWA J. 22 (2001) 121-131.
  12. Clair B., Jaouen G., Beauchêne J., Fournier M., Mapping radial, tangential and longitudinal shrinkages and its relation to tension wood in discs of the tropical tree Symphonia globulifera, Holzforschung 57 (2003) 665-671.
  13. Clair B., Ruelle J., Thibaut B., Relationship between growth stresses, mechano-physical properties and proportion of fibre with gelatinous layer in chestnut (Castanea Sativa Mill.), Holzforschung 57 (2003) 189-195.
  14. Clair B., Almeras T., Sugiyama J., Compression stress in opposite wood of angiosperms: observations in chestnut, mani and poplar, Ann. For. Sci. 63 (2006) 507-510 [CrossRef] [EDP Sciences].
  15. Clair B., Ruelle J., Beauchêne J., Prevost M.F., Fournier M., Tension wood and opposite wood in 21 tropical rainforest species. 1. About the presence of G layer, IAWA J. 27 (2006) 329-338.
  16. Constant T., Mothe F., Badia M.A., Saint-André L., How to relate the standing tree shape to internal wood characteristics: Proposal of an experimental method applied to poplar trees, Ann. For. Sci. 60 (2003) 371-378 [CrossRef] [EDP Sciences].
  17. Coutand C., Jeronimidis G., Chanson B., Loup C., Comparison of mechanical properties of tension and opposite wood in Populus, Wood Sci. Technol. 38 (2004) 11-24 [CrossRef].
  18. Dadswell H.E., Wardrop A.B., What is reaction wood? Australian Forestry 13 (1949) 22-33.
  19. Fisher J.B., Stevenson J.W., Occurrence of reaction wood in branches of Dicotyledons and its role in tree architecture, Bot. Gaz. 142 (1981) 82-95 [CrossRef].
  20. Fournier M., Chanson B., Thibaut B., Guitard D., Mesure des déformations résiduelles de croissance à la surface des arbres, en relation avec leur morphologie. Observation sur différentes espèces, Ann. Sci. For. 51 (1994) 249-266.
  21. Gindl W., Comparing Mechanical properties of normal and compression wood in Norway spruce: the role of lignin in compression parallel to the grain, Holzforschung 56 (2002) 395-401.
  22. Haines D.W., Leban J.M., Herbe C., Determination of Young's modulus for spruce, fir and isotropic materials by the resonance flexure method with comparisons to static flexure and other dynamic methods, Wood Sci. Technol. 30 (1996) 253-263 [CrossRef].
  23. Hori R., Suzuki H., Kamiyama T., Sugiyama J., Variation of microfibril angles and chemical composition: Implication for functional properties, J. Mater. Sci. lett. 22 (2003) 963-966 [CrossRef].
  24. Huang C.L., Kutscha N.P., Leaf G.J., Megraw R.A., Comparison of microfibril angle measurement techniques, in: Proceedings of the IAWA/IUFRO international workshop on the Significance of Microfibril Angle to Wood quality, 1998, pp. 177-205.
  25. Jourez B., Le bois de tension 1. Définition et distribution dans l'arbre, Biotechnol. Agron. Soc. Environ. 1 (1997) 100-112.
  26. Jourez B., Le bois de tension 2. Évaluation quantitative, formation et rôle dans l'arbre, Biotechnol. Agron. Soc. Environ. 1 (1997) 167-177.
  27. Jourez B., Riboux A., Leclercq A., Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv "Ghoy"), IAWA J. 22 (2001) 133-157.
  28. Jourez B., Riboux A., Leclercq A., Comparison of basic density and longitudinal shrinkage in tension wood and opposite wood in young stems of Populus euramericana cv. "Ghoy" when subjected to a gravitational stimulus, Can. J. For. Res. 31 (2001) 1676-1683 [CrossRef].
  29. Okuyama T., Takeda H., Yamamoto H., Yoshida M., Relation between growth stress and lignin concentration in the cell wall: Ultraviolet microscopic spectral analysis, J. Wood Sci. 44 (1998).
  30. Onaka F., Studies on compression and tension wood, Wood research, Bull. Wood Res. Inst., Kyoto Univ., Japan, 24 (1949) 1-88.
  31. Ruelle J., Yamamoto H., Thibaut B., Growth stresses and cellulose structural parameters in tension and normal wood from three tropical rainforest angiosperms species, Bioresource (2007) 235-251.
  32. Senft J.F., Bendtsen B.A., Measuring microfibrillar angles using light microscopy, Wood Fiber Sci. 17 (1985) 564-567.
  33. Timell T.E., Compression wood in gymnosperms, Springer-Verlag, Berlin Heidelberg, 1986.
  34. Washusen R., Ades P., Evans R., Ilic J., Vinden P., Relationships between density, shrinkage, extractives content and microfibril angle in tension wood from three provenances of 10-year-old Eucalyptus globulus Labill. Holzforschung 55 (2001) 176-182.
  35. Washusen R., Ilic J., Waugh G., The relationship between longitudinal growth strain and the occurrence of gelatinous fibers in 10 and 11-year-old Eucalyptus globulus Labill., Holz Roh- Werkst. 61 (2003) 299-303 [CrossRef].
  36. Yamamoto H., Okuyama T., Yoshida M., Method of determining the mean microfibril angle of wood over a wide range by the improved Cave's method, Mokuzai Gakkaishi 39 (1993) 118-125.
  37. Yamamoto H., Generation mechanism of growth stresses in wood cell walls: roles of lignin deposition and cellulose microfibril during cell wall maturation, Wood Sci. Technol. 22 (1998).
  38. Yamamoto H., Kojima Y., Okuyama T., Abasolo W.P., Gril J., Origin of the Biomechanical properties of wood related to the fine structure of the multi-layered cell wall, J. Biomech. Eng. 124 (2002) 432-440 [CrossRef] [PubMed].
  39. Yoshida M., Ohta H., Yamamoto H., Okuyama T., Tensile growth stress and lignin distribution in the cell walls of yellow poplar, Liriodendron tulipifera L., Trees 16 (2002) 457-464 [CrossRef].
  40. Yoshida M., Okuyama T., Techniques for measuring growth stress on the xylem surface using strain and dial gauges, Holzforschung 56 (2002) 461-467.
  41. Yoshida M., Ikawa M., Kaneda K., Okuyama T., Stem tangential strain on the tension wood side of Fagus crenata saplings, J. Wood Sci. 49 (2003) 475-478.
  42. Yoshizawa N., Inami A., Miyake S., Ishiguri F., Yokota S., Anatomy and lignin distribution of reaction wood in two Magnolia species, Wood Sci. Technol. 34 (2000) 183-196 [CrossRef].

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.