Free Access
Issue
Ann. For. Sci.
Volume 57, Number 5-6, June-September 2000
Second International Workshop on Functional-Structural Tree Models
Page(s) 543 - 554
DOI https://doi.org/10.1051/forest:2000141

References

1
Barczi J.-F., Reffye P. de, Caraglio Y., Essai sur l'identification et la mise en oeuvre des paramètres nécessaires à la simulation d'une architecture végétale. Le logiciel AMAPsim, in: Bouchon J., Reffye P. de, Barthélémy D. (Eds.), Modélisation et Simulation de l'Architecture des Végétaux, INRA, Paris, 1997, pp. 205-254.
2
Bell A.D., Dynamic morphology: A contribution to plant population ecology, in: Dirzo R., Sarukhán J. (Eds.), Perspectives on Plant Population Ecology, Sinauer, Sunderland, 1984, pp. 48-65.
3
Bell A.D., The simulation of branching patterns in modular organisms, Phil. Trans. Royal Soc. London B 313 (1986) 143-159.
4
Bell A.D., Roberts D., Smith A., Branching patterns: The simulation of plant architecture, J. Theor. Biol. 81 (1979) 351-375.
5
Blaise F., Simulation du parallélisme dans la croissance des plantes et applications, Thèse, Université Louis Pasteur, Strasbourg, 1991.
6
Clausnitzer V., Hopmans J.W., Simultaneous modeling of transient three-dimensional root growth and soil water flow, Plant Soil 164 (1994) 299-314.
7
den Dulk J.A., The interpretation of remote sensing: a feasibility study, Dissertation, University of Wageningen, 1989.
8
Diaz-Ambrona C.H., Tarquis A.M., Minguez M.I., Faba bean canopy modelling with a parametric open L-system: a comparison with the Monsi and Saeki model, Field Crops Res. 58 (1998) 1-13.
9
Doussan C., Pagès L., Vercambre G., Modelling of the hydraulic architecture of root systems: An integrated approach to water absorption - Model description, Ann. Bot. 81 (1998) 213-223.
10
Doussan C., Vercambre G., Pagès L., Modelling of the hydraulic architecture of root systems: an integrated approach - Distribution of axial and radial conductances in maize, Ann. Bot. 81 (1998) 225-232.
11
Fisher J.B., Honda H., Computer simulation of branching pattern and geometry in Terminalia (Combretaceae), a tropical tree, Bot. Gaz. 138 (1977) 377-384.
12
Fournier C., Andrieu B., A 3D architectural and process-based model of maize development, Ann. Bot. 81 (1998) 233-250.
13
Françon J., Sur la modélisation informatique de l'architecture et du développement des végétaux, in: Edelin C. (Ed.), L'Arbre, Biologie et Développement, Naturalia Monspeliensia h.s., Montpellier, 1991, pp. 231-249.
14
Godin C., Caraglio Y., A multiscale model of plant topological structures, J. Theor. Biol. 191 (1998) 1-46.
15
Goel N.S., Rozehnal I., Some non-biological applications of L-systems, Int. J. Gen. Syst. 18 (1991) 321-405 + color plates.
16
Goel N.S., Knox L.B., Norman J.M., From artificial life to real life: Computer simulation of plant growth, Int. J. Gen. Syst. 18 (1991) 291-319.
17
Guédon Y., Modélisation de séquences d'événements décrivant la mise en place d'éléments botaniques, in: Bouchon J., Reffye P. de, Barthélémy D. (Eds.), Modélisation et Simulation de l'Architecture des Végétaux, INRA, Paris, 1997, pp. 187-202.
18
Harper J., Bell A.D., The population dynamics of growth form in organisms with modular construction, in: Anderson R.M., Turner B.D., Taylor L.R. (Eds.), Population Dynamics, Blackwell, Oxford, 1979, pp. 29-52.
19
Hauhs M., Kastner-Maresch A., Rost-Siebert K., A model relating forest growth to ecosystem-scale budgets of energy and nutrients, Ecolog. Modell. 83 (1995) 229-243.
20
Kari L., Rozenberg G., Salomaa A., L systems, in: Rozenberg G., Salomaa A. (Eds.), Handbook of Formal Languages, Vol. 1: Word, Language, Grammar, Springer, Berlin, 1997, pp. 253-328.
21
Kurth W., Growth grammar interpreter GROGRA 2.4 - A software tool for the 3-dimensional interpretation of stochastic, sensitive growth grammars in the context of plant modelling. Introduction and Reference Manual, Berichte des Forschungszentrums Waldökosysteme Göttingen B 38 (1994), available at http://www.uni-forst.gwdg.de/ wkurth/public.html
22
Kurth W., Elemente einer Regelsprache zur dreidimensionalen Modellierung des Triebwachstums von Laubbäumen, in: Hempel G. (Ed.), 8. Tagung der Sektion Forstliche Biometrie und Informatik, Deutscher Verband Forstlicher Forschungsanstalten, Biotechnical Faculty, Ljubljana, 1996, pp. 174-187.
23
Kurth W., Some new formalisms for modelling the interactions between plant architecture, competition and carbon allocation, Bayreuther Forum Ökologie 52 (1998) 53-98.
24
Kurth W., Die Simulation der Baumarchitektur mit Wachstumsgrammatiken, Habilitation Thesis, University of Göttingen, 1998, Wissenschaftlicher Verlag Berlin, 1999.
25
Kurth W., Lanwert D., Biometrische Grundlagen für ein dynamisches Architekturmodell der Fichte (Picea abies (L.) Karst.), Allgemeine Forst- und Jagdzeitung 166 (1995) 177-184.
26
Kurth W., Sloboda B., Growth grammars simulating trees - an extension of L-systems incorporating local variables and sensitivity, Silva Fenn. 31 (1997) 285-295.
27
Kurth W., Sloboda B., Tree and stand architecture and growth described by formal grammars. I. Nonsensitive trees, J. For. Sci. 45 (1999) 16-30.
28
Kurth W., Sloboda B., Tree and stand architecture and growth described by formal grammars. II. Sensitive trees and competition, J. For. Sci. 45 (1999) 53-63.
29
Le Dizès S., Cruiziat P., Lacointe A., Sinoquet H., Le Roux X., Balandier P., Jacquet P., A model for simulating structure-function relationships in walnut tree growth processes, Silva Fenn. 31 (1997) 313-328.
30
Mech R., Modelling and simulation of the interaction of plants with the environment using L-systems and their extensions, Ph.D. Thesis, University of Calgary, 1997.
31
Mech R., Prusinkiewicz P., Visual models of plants interacting with their environment, Computer Graphics Proceedings, Annual Conference Series, SIGGRAPH 96 (1996) 397-410.
32
Moon P., Spencer D.E., Illumination from a non-uniform sky, Illumin. Eng. 37 (1942) 707-726.
33
Pagès L., Ariès F., SARAH : Modèle de simulation de la croissance, du développement et de l'architecture des systèmes racinaires, Agronomie 8 (1988) 889-896.
34
Pagès L., Kervella J., Growth and development of root systems: Geometrical and structural aspects, Acta Biotheor. 38 (1990) 289-302.
35
Perttunen J., Sievänen R., Nikinmaa E., Salminen H., Saarenmaa H., Väkevä J., LIGNUM: A tree model based on simple structural units, Ann. Bot. 77 (1996) 87-98.
36
Prusinkiewicz P., A look at the visual modeling of plants using L-systems, in: Hofestädt R., Lengauer T., Löffler M., Schomburg D. (Eds.), Bioinformatics - Proceedings GCB'96, Springer, Berlin, Lect. Notes Comp. Sci. 1278 (1997) 11-29.
37
Prusinkiewicz P., Hanan J., L-systems: From formalism to programming languages, in: Rozenberg G., Salomaa A. (Eds.), Lindenmayer Systems, Springer, Berlin, pp. 193-211.
38
Prusinkiewicz P., Kari L., Subapical bracketed L-systems, L. N. Comp. Sci. 1073 (1996) 550-564.
39
Prusinkiewicz P., Lindenmayer A., The Algorithmic Beauty of Plants, Springer, New York, 1990.
40
Prusinkiewicz P., James M., Mech R., Synthetic topiary, Computer Graphics Proceedings, Ann. Conf. Ser., SIGGRAPH 94 (1994) 351-358.
41
Prusinkiewicz P., Remphrey W.R., Davidson C.G., Hammel M.S., Modeling the architecture of expanding Fraxinus pennsylvanica shoots using L-systems, Can. J. Bot. 72 (1994) 701-714.
42
Prusinkiewicz P., Hammel M., Hanan J., Mech R., Visual models of plant development, in: Rozenberg G., Salomaa A. (Eds.), Handbook of Formal Languages, Vol. 3: Beyond Words, Springer, Berlin, 1997, pp. 535-597.
43
Reffye P. de, Edelin C., Françon J., Jaeger M., Puech C., Plant models faithful to botanical structure and development, Comp. Graph. ACM/SIGGRAPH 22 (1988) 151-158.
44
Reffye P. de, Fourcaud T., Blaise F., Barthélémy D., Houllier F., A functional model of tree growth and tree architecture, Silva Fenn. 31 (1997) 297-311.
45
Takenaka A., A simulation model of tree architecture development based on growth response to local light environment, J. Plant Res. 107 (1994) 321-330.

Abstract

Copyright INRA, EDP Sciences