Free Access
Issue
Ann. For. Sci.
Volume 59, Number 1, January-February 2002
Page(s) 19 - 27
DOI https://doi.org/10.1051/forest:2001002

References

1
Cochard H., Vulnerability to several conifers to air embolism, Tree Physiol. 11 (1992) 73-83.
2
Cochard H., Bréda N., Granier A., Aussenac G., Vulnerability to air embolism of three european oak species (Quercus petraea (Matt) liebl, Q. pubescens Willd, Q. robur L.), Ann. Sci. For. 49 (1992) 225-233.
3
Cochard H., Cruiziat P., Tyree M.T., Use positive pressures to establish Vulnerability curves, Plant Physiol. 100 (1992) 205-209.
4
Cochard H., Bréda N., Granier A., Whole tree hydraulic conductance and water loss regulation: evidence for stomatal control of embolism, Ann. Sci. For. 63 (1996) 197-206.
5
Cochard H., Lemoine D., Dreyer E., The effects of acclimation to sunlight on the xylem vulnerability to embolism in Fagus sylvatica L, Plant Cell Environ. 22 (1999) 101-108.
6
Ewers F.W., Cruisiat P., Measuring water transport and shortage, in: Technique and Approaches in Forest Trees Ecophysiology, Lassoie J.P., Hinckley T.M. (Eds.), CRC Press, Boca Raton, Ann Arbor, Boston, 1990, pp. 91-115.
7
Granier A., Biron P., Lemoine D., Water balance, transpiration and canopy conductance in two beech stands, Agric. Forest Meteorol. 100 (2000) 391-308.
8
Granier A., Ceschia E., Damesin C., Dufrêne E., Epron D., Gross P., Lebaube S., Le Dantec V., Le Goff N., Lemoine D., Lucot E., Ottorini J.M., Pontailler J.Y., Saugier B., Carbon balance of a young beech forest over a two year experiment, Funct. Ecol. 14 (2000) 312-325.
9
Jarbeau J.A., Ewers F.W., Davis S.D., The mechanim of water-stress-induced embolism in two species of chaparral shrubs, Plant Cell Environ. 18 (1995) 189-196.
10
Jones H.G., Sutherland R.A., Stomatal control of xylem embolism, Plant Cell Environ. 14 (1991) 607-612.
11
Lange O.L., Lösch R., Schulze E-D., Kappen L., Responses of stomata to changes in humidity, Planta 100 (1971) 76-86.
12
Lebaube S., Le Goff N., Ottorini J.M., Granier A., Carbon balance and tree growth in a Fagus sylvatica stand, Ann. For. Sci. 57 (2000) 49-61.
13
Le Goff N., Ottorini J.M., Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North-East France, Ann. For. Sci. 58 (2001) 1-13.
14
Lu P., Biron P., Granier A., Cochard H., Water relations on adult Norway spruce (Picea abies L. (Karst)) under soil drought in the Vosges mountain: whole tree hydraulic conductance, xylem embolism and water loss regulation, Ann. Sci. For. 53 (1996) 113-121.
15
Meinzer F.C., Grantz D.A., Stomatal and hydraulic conductance in groxing sugarcane: stomatal adjustment to water transport capacity, Plant Cell Environ. 13 (1990) 383-388.
16
Nobel P.S., Cui M.Y., Hydraulic conductances of soil, the soil air gap, and the root-changes for desert succulents in drying soil, J. Ex. Bot. 43 (1992) 319-326.
17
Sperry J.S., Relationship of xylem embolism to xylem pressure potential, stomatal closure, and shoot morphology in the palm Rhapis excelsa, Plant Physiol. 80 (1986) 110-116.
18
Sperry J.S., Donnelly J.R., Tyree M.T., A method for measuring hydraulic conductivity and embolism in xylem, Plant Cell Environ. 11 (1988) 35-45.
19
Sperry J.S., Pockman W.T., Limitation of transpiration by hydraulic conductance and cavitation in Betula occidentalis, Plant Cell Environ. 16. (1993) 279-287.
20
Sperry J.S., Sullivan J.E.M., Xylem embolism in response to freeze-thaw cycles and water stress in ring porous, diffuse porous, and conifer species, Plant Physiol. 100 (1992) 605-613.
21
Schulze E.D., Carbon dioxide and water vapour exchange in response to drought in atmosphere and in the soil, Ann. Rev. Plant Physiol. 37 (1986) 247-274.
22
Schultz H.R., Matthews M.A., Resistance to water transport in shoots of Vitis vinifera L, Plant Physiol. 88 (1988) 718-724.
23
Turner N.C., Correction flow resistances of plants measured from covered and exposed leaves, Plant Physiol. 68 (1981) 1090-1092.
24
Tyree M.T., Sperry J.S., Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model, Plant Physiol. 88 (1988) 574-580.
25
Tyree M.T., Ewers F.W., The hydraulic architecture of trees and other woody plants, New Phytol. 119 (1991) 345-360.
26
Tyree M.T., Cochard H., Cruiziat P., Sinclair B., Ameglio T., Drought-induced leaf shedding in walnut- evidence for vulnerability segmentation, Plant Cell Environ. 16 (1993) 879-882.
27
Tyree M.T., Sinclair B., Lu P., Granier A., Whole shoot hydraulic resistance in Quercus species measured with a new high-pressure flowmeter, Ann. Sci. For. 50 (1993) 417-423.
28
Tyree M.T., Yang S., Cruiziat P., Sinclair B., A maize-root dynamic model for water and solute transport, Plant Physiol. 104 (1994) 189-199.
29
Tyree M.T., Patino S., Bennink J., Alexander J., Dynamic measurements of root hydraulic conductance using a high-pressure flowmeter in the laboratory and the field, J. Ex. Bot. 282 (1995) 83-94.
30
Zimmermann M.H., Hydraulic architecture of some diffuse-porous trees, Can. J. Bot. 56 (1978) 2286-2295.
31
Zimmermann M.H., Xylem structure and the ascent of sap, Springer-Verlag, Berlin, New York, 1983, 143 p.

Abstract

Copyright INRA, EDP Sciences