Free Access
Ann. For. Sci.
Volume 59, Number 5-6, July-October 2002
Proceedings of the Wood, Breeding, Biotechnology and Industrial Expectations Conference
Page(s) 551 - 556


  1. Balodis V., Influence of grain angle on twist in seasoned boards, Wood Sci. 5 (1972) 44-50.
  2. Brazier J.D., An assessment of the incidence and significance of spiral grain in young conifer trees, For. Prod. J. 15 (1965) 308-312.
  3. Costa E., Silva J., Borralho N.M.G., Wellendorf H., Genetic parameter estimates for diameter growth, pilodyn penetration and spiral grain in Picea abies (L.) Karst., Silvae Genet. 49 (2000) 29-36.
  4. Costa E., Silva J., Wellendorf H., Borralho N.M.G., Prediction of breeding values and expected genetic gains in diameter growth, wood density and spiral grain from parental selection in Picea abies (L.) Karst., Silvae Genet. 49 (2000) 102-109.
  5. Danborg F., Drying properties and visual grading of juvenile wood from fast grown Picea abies and Picea sitchensis, Scand. J. For. Res. 9 (1994) 91-98.
  6. Danborg F., Spiral grain in plantation trees of Picea abies, Can. J. For. Res. 24 (1994) 1662-1671.
  7. Forsberg D., Warensjö M., Grain angle variation - a major determinant of twist in sawn Picea abies (L.) Karst., Scand. J. For. Res. 16 (2001) 269-277.
  8. Gilmour A.R., Cullis B.R., Welham S.J., Thompson R., ASREML Reference Manual, Orange, Australia, 1999, 210 p.
  9. Gilmour A.R., Thompson R., Cullis B.R., Average Information REML, an efficient algorithm for variance parameter estimation in linear mixed models, Biometrics 52 (1995) 1440-1450.
  10. Hansen J.K., Genetic variation of spiral grain in Sitka spruce growing in Denmark. Multiple-trait selection for improved timber quality, Ph.D. Thesis, Royal Veterinary and Agric., Univ. Dept. of Econom. and Nat. Res. Arboretum, 1999, 48 p.
  11. Hansen J.K., Roulund H., Genetic parameters for spiral grain, stem form, pilodyn and growth in 13 years old clones of Sitka spruce (Picea sitchensis (Bong.) Carr.), Silvae Genet. 46 (1997) 107-113.
  12. Hansen J.K., Roulund H., Genetic parameters for spiral grain in two 18-year-old progeny trials with Sitka spruce in Denmark, Can. J. For. Res. 28 (1998) 920-931.
  13. Hansen J.K., Roulund H., Spiral grain in a clonal trial with Sitka spruce, Can. J. For. Res. 28 (1998) 911-919.
  14. Harris J.M., Spiral grain and wave phenomena in wood formation, Springer-Verlag, Berlin, 1989, 214 p.
  15. Haslett A.N., Simpson I.G., Kimberley M.O., Utilisation of 25-year-old Pinus radiata. Part 2: Warp of structural timber in drying, N.Z. J. For. Sci. 21 (1991) 228-234.
  16. Henderson C., Application of linear models in animal breeding, Univ. Guelph, Guelph, 1984, 462 p.
  17. Högberg K.-A., Karlsson B., Nursery selection of Picea abies clones and effects in field trials, Scand. J. For. Res. 12 (1998) 12-20.
  18. Johansson G., Kliger I.R., Perstorper M., Quality of structural timber - product specification system required by end-users, Holz Roh-Werks. 52 (1994) 42-48.
  19. Kliger R., Säll H., Prediction of twist and industrial validation. Final report subtask B9.1, FAIR CT 96-1915, Improved Spruce Timber Utilisation, Chalmers Univ. of Tech., 2000, 18 p.
  20. Kollmann F.F.P., Coté W.A., Principles of wood science and technology 1. Solid wood, Springer-Verlag, Berlin, 1984, 592 p.
  21. Krempl H., Untersuchungen über den Drehwuchs bei Fichten, Mitt. Forstl. Bundes-Versuchanstalt, Wien, 89 (1970) 117 p.
  22. Northcott P.L., Is spiral grain the normal growth pattern, For. Chron. 33 (1957) 335-352.
  23. Noskowiak A.F., Spiral grain patterns from increment cores, For. Prod. J. 18 (1968) 57-60.
  24. Panshin A.J., De Zeeuw C., Textbook on wood technology, 4th ed., McGraw Hill Book Company, New York, 1980, 722 p.
  25. Pape R., Influence of thinning on spiral grain in Norway spruce grown on highly productive sites in southern Sweden, Silva Fenn. 33 (1999) 3-12.
  26. Patterson H.D., Thompson R., Recovery of inter-block information when block sizes are unequal, Biometrika 58 (1971) 545-554.
  27. Perstorper M., Quality of structural timber - end-user requirements and performance control, Ph.D. Thesis, Dept. of Struct. Engineering, Division of Steel and Timber struct., Chalmers University, Gothenburg, 1994, 30 p.
  28. Rault J.P., Marsh E.K., The incidence and sylvicultural implication of spiral grain in Pinus longifolia, Roxb. in South Africa and its effect on converted timber, Commonwealth Forestry Conference, Canada, 1952, pp. 1-21.
  29. Schaeffer L.R., Wilton J.W., Thompson R., Simultaneous estimation of variance and covariance components from multitrait mixed model equations, Biometrics 34 (1978) 199-208.
  30. Sorensson C.T., Burdon R.D., Cown D.J., Jefferson P.A., Shelbourne C.J.A., Incorporating spiral grain into New Zealand's radiata pine breeding programme, in: Burdon R.D., Moore J.M. (Eds.), IUFRO 97, FRI, Rotorua, 1997, pp. 180-191.
  31. Spicer R., Gartner B.L., Darbyshire R.L., Sinuous stem growth in a Douglas-fir (Pseudotsuga menziesii) plantation: growth patterns and wood-quality effects, Can. J. For. Res., 30 (2000) 761-768.
  32. Tremblay C., Longitudinal and radial variation of slope of grain in black spruce lumber, For. Prod. J. 45(1995) 79-83.
  33. Woxblom L., Warp of sawn timber of Norway spruce in relation to end-user requirements. Quality sawing pattern and economic aspects, Ph.D. Thesis, Acta Univ. Agric. Sueciae, Silvestria 126. SLU, Uppsala, 1999, 119 p.


Copyright INRA, EDP Sciences