Free Access
Ann. For. Sci.
Volume 59, Number 5-6, July-October 2002
Proceedings of the Wood, Breeding, Biotechnology and Industrial Expectations Conference
Page(s) 687 - 697


  1. Aitken-Christie J., Somatic embryogenesis for large-scale clonal testing and propagation of elite material, in: Abstracts of the WBB Conference, Bordeaux, France, June 11-14, 2001, p. 9.
  2. Bajaj Y.P.S., Transgenic trees, biotechnology in agriculture and forestry, Vol. 44, Springer-Verlag, Germany, 2000.
  3. Bercetche J., Pâques M., Somatic embryogenesis in maritime pine (Pinus pinaster Ait.), in: Jain S.M., Gupta P.K., Newton R.J. (Eds.), Somatic embryogenesis in woody plants, gymnosperms, Vol. 3, Kluwer Academic Publishers, The Netherlands, 1995, pp. 221-242.
  4. Bercetche J., Dinant M., Coosemans N., Pâques M., Matagne R.F., Particle gun: a new transformation possibility in Picea abies, Annales AFOCEL (1992) 29-48.
  5. Bilang R., Lida S., Peterhans A., Potrykus I., Paskowski J., The 3' terminal region of the hygromycin-B-resistance gene is important for its activity in Escherichia coli and Nicotiana tabacum, Gene 100 (1991) 247-250.
  6. Bishop-Hurley S.L., Zabkiewicz R.J., Grace L., Gardner R.C., Wagner A., Walter C., Conifer genetic engineering: transgenic Pinus radiata (D. Don) and Picea abies (Karst) plants are resistant to the herbicide Buster, Plant Cell Rep. 29 (2001) 235-243.
  7. Butcher T.B., Pinus pinaster and P. radiata tree breeding programs, Winston Churchill Memorial Fellowship, report, 1997.
  8. Chaperon H., Maritime pine reforestation in the Aquitaine, Presses de la Société d'Exploitation de l'Imprimerie Couesnon, Champagne-sur-Seine, 1986.
  9. Charest P.J., Devantier Y., Lachance D., Stable genetic transformation of Picea mariana (black spruce) via particle bombardment, In Vitro Cell. Dev. Biol. Plant 32 (1996) 91-99.
  10. Clapham D., Demel P., Elfstrand M., Koop H.U., Sabala I., Von Arnold S., Gene transfer by particle bombardment to embryogenic cultures of Picea abies and the production of transgenic plantlets, Scand. J. For. Res. 15 (2000) 151-160.
  11. Cyr D., Cryopreservation of embryogenic cultures of conifers and its application to clonal forestry, in: Jain S., Gupta P., Newton R. (Eds.), Somatic embryogenesis of woody plants, Kluwer, Dordrecht, The Netherland, 1999, Vol. 4, pp. 239-262.
  12. Diner A.M., Genetic transformation of Pinus palustris (Longleaf Pine), in: Bajaj Y.P.S. (Ed.), Biotechnology in agriculture and forestry, Vol. 44, Transgenic trees, Sringer-Verlag, Germany, 2000, pp. 185-191.
  13. Duchesne L.C., Charest P.J., Effect of promoter sequence on transient expression of the $\beta$-glucuronidase gene in embryogenic calli of Larix x eurolepsis and Picea mariana following microprojection, Can. J. Bot. 70 (1992) 175-180.
  14. Dumas E., Monteuuis O., In vitro regeneration of old maritime pines using adventitious budding from euphylls, Annales AFOCEL (1990) 44-56.
  15. Dumas E., Franclet A., Monteuuis O., Apical meristem micrografting of mature maritime pines (Pinus pinaster Ait.) onto in vitro young seedlings, C. R. Acad. Sci. Paris (III) 309 (1989) 723-728.
  16. Ellis D.D., McCabe D.E., McInnis S., Ramachandran R., Russell D.R., Wallace K.M., Martinell B.J., Roberts D.R., Raffa K.F., McCown B.H., Stable transformation of Picea glauca by particle acceleration, Biotechnology 11 (1993) 84-89.
  17. Enriquez-Obregon G.A., Vasquez-Padron R.I., Prieto-Samsonov D.L., De la Riva G.A., Selman-Housein G., Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation, Planta 206 (1998) 20-27.
  18. Harvengt L., Trontin J.F., Reymond I., Canlet F., Pâques M., Molecular evidence of true-to-type propagation of a 3-year-old Norway spruce through somatic embryogenesis, Planta 213 (2001) 828-832.
  19. Hodal L., Bochardt A., Nielsen J.E., Mattsson O., Okkels F.T., Detection, expression and specific elimination of endogenous $\beta$-glucuronidase activity in transgenic and non-transgenic plants, Plant Sci. 87 (1992) 115-122.
  20. Högberg K.A., Ekberg I., Norell L., Von Arnold S., Integration of somatic embryogenesis in a tree breeding programme: a case study with Picea abies, Can. J. For. Res. 28 (1998) 1536-1545.
  21. Jefferson R.A., Kavanagh T.A., Bevan M.W., GUS fusion: $\beta$-glucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO J. 6 (1987) 3901-3907.
  22. Klein T.M., Wolf E.D., Wu R., Sanford J.C., High-velocity microprojectile for delivering nucleic acids into living cells, Nature 327 (1987) 70-73.
  23. Klimaszewska K., Devantier Y., Lachance D., Lelu M.A., Charest P.J., Larix laricina (tamarack): somatic embryogenesis and genetic transformation, Can. J. For. Res. 27 (1997) 538-550.
  24. Koncz C., Schell J., The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector, Mol. Gen. Genet. 204 (1986) 383-396.
  25. Koukolikova-Nicola Z., Raineri D., Stephens K., Ramos C., Tinland B., Nester E.W., Hohn B., Genetic analysis of the virD operon of Agrobacterium tumefaciens: a search for functions involved in transport of T-DNA into the plant cell nucleus and in T-DNA integration, J. Bact. 175 (1993) 723-731.
  26. Kumar S., Fladung M., Controlling transgene integration in plants, Trends Plant Sci. 6 (2001) 155-159.
  27. Lambe P., Dinant M., Matagne R.F., Ledoux L., Genetic transformation of Nicotiana plumbaginifolia cells using a low-cost particle gun device, Arch. Int. Physio. Bioch. Bioph. 99 (1991) 12.
  28. Lelu M.A., Bastien C., Drugeault A., Gouez M.L., Klimaszewska K., Somatic embryogenesis and plantlet development in Pinus sylvestris and Pinus pinaster on medium with and without growth regulators, Physiol. Plant 105 (1999) 719-728.
  29. Levée V., Lelu M.A., Jouanin L., Cornu D., Pilate G., Agrobacterium tumefaciens-mediated transformation of hybrid larch (Larix kaempferi $\times$ L. decidua) and transgenic plant regeneration, Plant Cell Rep. 16 (1997) 680-685.
  30. Levée V., Garin E., Klimaszewska K., Séguin A., Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens, Mol. Breed. 5 (1999) 429-440.
  31. Mullin T.J., Park Y.S., Estimating genetic gains from alternative breeding strategies for clonal forestry, Can. J. For. Res. 22 (1992) 14-23.
  32. Odell J.T., Nagy F., Chua N.H., Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter, Nature 313 (1985) 810-812.
  33. Ortiz J.P.A., Reggiardo M.I., Ravizzini R.A., Altabe S.G., Cervigni G.D.L., Spitteler M.A., Morata M.M., Elias F.E., Vallejos R.H., Hygromycin-resistance as an efficient selectable marker for wheat stable transformation, Plant Cell Rep. 15 (1996) 877-881.
  34. Park Y.S., Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations, Ann. For. Sci. 59 (2002) 651-656.
  35. Pilate G., Leplé J.C., Cornu D., Lelu M.A., Transgenic Larch (Larix species), in: Bajaj Y.P.S. (Ed.), Biotechnology in agriculture and forestry, Vol. 44, Transgenic trees, Sringer-Verlag, Germany, 2000, pp. 125-139.
  36. Ramarosandratana A., Harvengt L., Bouvet A., Calvayrac R., Pâques M., Effects of carbohydrate source, polyethylene glycol and gellan gum concentration on embryonal-suspensor mass (ESM) proliferation and maturation of maritime pine somatic embryos, In Vitro Cell. Dev. Biol. Plant 37 (2001) 29-34.
  37. Ramarosandratana A., Harvengt L., Bouvet A., Calvayrac R., Pâques M., Influence of the embryonal-suspensor mass (ESM) sampling on development and proliferation of maritime pine somatic embryos, Plant Sci. 160 (2001) 473-479.
  38. Robert C.S., Rajagopal S., Smith L.A., Nguyen T.A., Yang W., Nugroho S., Ravi K.S., Cao M.L., Vijayachandra K., Patell V., Harcourt R.L., Dransfield L., Desamero N., Slamet I., Keese P., Kilian A., Jefferson R.A., A comprehensive set of modular vectors for advanced manipulations and efficient transformation of plants, Rockefeller Foundation Meeting of the International Program on Rice Biotechnology, Malacca, Malaysia, Sept. 15-19, 1997, (Poster).
  39. Sambrook J., Fritsch E.F., Maniatis T., Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
  40. Smith D.R., Successful rejuvenation of radiata pine, in: 25th Southern Forest Tree Improvement Conference, New Orleans, July 11-14, 1999, pp. 158-167.
  41. Stomp A.M., Histochemical localization of $\beta$-glucuronidase, in: Gallagher S.R. (Ed.), Gus protocols. Using the gus gene as a reporter of gene expression, Academic Press, San Diego, 1992, pp. 103-114.
  42. Sutton B., Commercial delivery of genetic improvement to conifer plantations using somatic embryogenesis, Ann. For. Sci. 59 (2002) 657-661.
  43. Tian L.M., Charest P.J., Séguin A., Rutledge R.G., Hygromycin resistance is an effective selectable marker for biolistic transformation of black spruce (Picea mariana), Plant Cell Rep. 19 (2000) 358-362.
  44. Timmis R., Bioprocessing for tree production in the forest industry: conifer somatic embryogenesis, Biotechnol. Prog. 14 (1998) 156-166.
  45. Von Aderkas P., Bonga J.M., Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment, Tree Physiol. 20 (2000) 921-928.
  46. Wagner A., Moody J., Grace L.J., Walter C., Transformation of Pinus radiata based on selection with hygromycin B, N. Z. J. For. Sci. 27 (1997) 280-288.
  47. Walter C., Grace L.J., Wagner A., White D.W.R., Walden A.R., Donaldson S.S., Hinton H., Gardner R.C., Smith D.R., Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don, Plant Cell Rep. 17 (1998) 460-468.
  48. Walter C., Grace L.J., Donaldson S.S., Moody J., Gemmell J.E., van der Maas S., Kvaalen H., Lönneborg A., An efficient Biolistic transformation protocol for Picea abies embryogenic tissue and regeneration of transgenic plants, Can. J. For. Res. 29 (1999) 1539-1546.
  49. Wenck A.R., Quinn M., Whetten R.W., Pullman G., Sederoff R., High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda), Plant Mol. Biol. 39 (1999) 407-416.


Copyright INRA, EDP Sciences