Free Access
Ann. For. Sci.
Volume 60, Number 3, April 2003
Page(s) 259 - 269


  1. Alemdag I.S., National site-index and height growth curves for white spruce growing in natural stands in Canada, Can. J. For. Res. 21 (1991) 1466-1474.
  2. Bailey R.L., Clutter J.L., Base-age invariant polymorphic site curve, For. Sci. 20 (1974) 155-159.
  3. Beaumont J.F., Ung C.H., Bernier-Cardou M., Relating site index to ecological factors in black spruce stands: tests of hypotheses, For. Sci. 45 (1999) 484-491.
  4. Beland M., Bergeron Y., Height growth of jack pine (Pinus banksiana) in relation to site types in boreal forests of Abatibi, Quebec, Can. J. For. Res. 26 (1996) 2170-2179.
  5. Ca nadas N., Pinus pinea L. en el Sistema Central (Valles del Tiétar y del Alberche): desarrollo de un modelo de crecimiento y producción de pi na, Tesis doctoral, E.T.S.I. de Montes, Universidad Politécnica de Madrid, 2000, 356.
  6. Cao Q.V., Estimating coefficients of base-age invariant site index equations, Can. J. For. Res. 23 (1993) 2343-2347.
  7. Carmean W.H., Site index curves for upland oaks in the Central States, For. Sci. 18 (1972) 109-120.
  8. Carmean W.H., Forest site quality evaluation in the United States, Adv. Agron. 27 (1975) 209-269.
  9. Chen H.Y.H., Klinka K., Kabzems R.D., Height growth and site index models for trembling aspen (Populus tremuloides Michx.) in northern British Columbia, For. Ecol. Manage. 102 (1998) 157-165.
  10. Cieszewski C.J., Bella I.E., Polymorphic height and site index curves for lodgepole pine in Alberta, Can. J. For. Res. 19 (1989) 1151-1160.
  11. Duplat P., Tran-Ha M., Modélisation de la croissance en hauteur dominante du chêne sessile (Quercus petraea Liebl) en France. Variabilité inter-regionale et effet de la période récente (1959-1992), Ann. Sci. For. 54 (1997) 611-634.
  12. Eflving B., Kiviste A., Construction of site index equations for Pinus sylvestris L. using permanent plot data in Sweden, For. Ecol. Manage. 98 (1997) 125-134.
  13. Gallant A.R., The power of the likelihood ratio test of location in nonlinear regression models, J. Am. Stat. Assoc. 70 (1975) 198-203.
  14. García Güemes C., Modelo de simulación selvícola para Pinus pinea L. en la provincia de Valladolid, Tesis doctoral, E.T.S.I. de Montes, Universidad Politécnica de Madrid, 1999, 221.
  15. García O., A stochastic differential equation model for the height growth of forest stands, Biometrics 39 (1983) 1059-1072.
  16. Goelz J.C.G., Burk T.E., Development of a well-behaved site index equation: jack pine in north central Ontario, Can. J. For. Res. 22 (1992) 776-784.
  17. Huang S., Development of compatible height and site index models for young and mature stands within an ecosystem-based management framework, in: Amaro A., Tomé M. (Eds.), Empirical and process based models for forest tree and stand growth simulation, 1997.
  18. Huang S., Price D., Titus S.J., Development of ecoregion-based height-diameter models for white spruce in boreal forests, For. Ecol. Manage. 129 (2000) 125-141.
  19. Huet S., Jolivet E., Messéan A., La régression non-linaire : méthodes et applications en biologie, INRA, Paris, 1992.
  20. Johansson T., Site index curves for european aspen (Populus tremula L.) growing on forest land of different soils in Sweden, Silva Fenn. 30 (1996) 437-458.
  21. Khattree R., Naik D.N., Applied multivariate statistics with SAS software, SAS Institute Inc., Cary, NC, 1995.
  22. Kiviste A., Álvarez J.G., Rojo A., Ruiz A.D., Funciones de crecimiento de aplicación en el ámbito forestal, Monografías INIA: Forestal, 4, INIA, Madrid, 2002.
  23. Korf V., A mathematical definition of stand volume growth law, Lesnicka Prace 18 (1939) 337-379.
  24. Monserud R.A., Height-growth and site index curves for inland Douglas fir based on stem analysis and forest habitat type, For. Sci. 30 (1984) 943-965.
  25. Pillsbury N.H., Mc Donald P.M., Reliability of tanoak volume equations when applied to different areas, West. J. App. For. 10 (1995) 72-78.
  26. Pita P.A., Clasificación provisional de las calidades de estación en las masas de pino pi nonero, Anales del Instituto Forestal de Investigaciones y Experiencias (1966) 172-182.
  27. Richards F.J., A flexible growth function for empirical use, J. Exp. Bot. 10 (1959) 290-300.
  28. Schumacher F.X., A new growth curve and its application to timber-yield studies, J. For. 37 (1939) 819-820.
  29. Seber G.A.F., Wild C.J., Nonlinear regression, John Wiley & Sons, New York, 1989.
  30. Weise W., Ertragstafeln für Kiefer, J. Springer, 1880.
  31. Zeide B., Standardization of growth curves, J. For. 76 (1978) 289-292.
  32. Zeide B., Analysis of growth equations, For. Sci. 39 (1993) 594-616.


Copyright INRA, EDP Sciences