Free Access
Issue
Ann. For. Sci.
Volume 61, Number 7, October-November 2004
Page(s) 609 - 615
DOI https://doi.org/10.1051/forest:2004064
References of Ann. For. Sci. 61 609-615
  1. Alexander R.R., Major habitat types, community types, and plant communities in the Rocky Mountains, US For. Serv. Rocky Mt. For. Range Exp. Stn. Gen. Tech. Rep. RM-123, 1985.
  2. Barrett J.W., Height growth and site index curves for managed, even-aged stands of ponderosa pine in the Pacific Northwest, USDA Forest Service Research Paper PNW-232, 1978.
  3. Chen H.Y.H., Klinka K., Height growth models for high-elevation subalpine fir, Engelmann spruce, and lodgepole pine in British Columbia, West. J. Appl. For. 15 (2000) 62-69.
  4. Chen H.Y.H., Klinka K., Kabzems R.D., Height growth and site index models for trembling aspen (Populus tremuloides Michx.) in northern British Columbia, For. Ecol. Manage. 102 (1998) 157-165.
  5. Daubenmire R., The use of vegetation in assessing the productivity of forest lands, Bot. Rev. 42 (1976) 115-143.
  6. Davidian M., Giltinan D.M., Nonlinear models for repeated measurement data, Chapman & Hall, London, 1995.
  7. Dolph K.L., Predicting height increment of young-growth mixed conifers in the Sierra Nevadas, USDA Forest Service Research Paper PSW-191, 1988.
  8. Elfving B., Kiviste A., Construction of site index equations for Pinus sylvestris L. using permanent plot data in Sweden, For. Ecol. Manage. 98 (1997) 125-134.
  9. Foiles M.W., Curtis J.D., Natural regeneration of ponderosa pine on scarified group cuttings in central Idaho, J. For. 63 (1965) 530-535.
  10. Hann D.W., Scrivani J.A., Dominant-height-growth and site-index equations for Douglas-fir and ponderosa pine in southwest Oregon, Oregon State University, Forest Research Laboratory, Corvallis, Oregon, Res. Bull. 59, 1987.
  11. Heidmann L.J., Ponderosa pine regeneration in the southwest, in Foresters' future: leaders or followers? Proceedings of the Society of American Foresters National Convention 1985, Society of American Foresters, Washington, DC, 1985, pp. 228-232.
  12. Kalbfleisch J.G., Probability and statistical inference, Vol. 2, Statistical inference, Springer-Verlag Inc., New York, 1985.
  13. Klinka K., Worrall J., Skoda L., Varga P., The distribution and synopsis of ecological and silvical characteristics of tree species of British Columbia's forests, Canadian Cartographics Ltd., Coquitlam, BC, 2000.
  14. Lloyd D., Angrove K., Hope G., Thompson C., A guide to site identification and interpretation for the Kamloops Forest Region, BC Ministry of Forests, Research Branch, Victoria, BC Land Management Handbook Number 23, 1990.
  15. Luttmerding H.A., Demarchi D.A., Lea E.C., Meidinger D.V., Vold T. (Eds.), Describing ecosystems in the field, 2nd ed., BC Ministry of Environment, Lands and Parks, Victoria, BC, Ministry of the Environment Manual 11, 1990.
  16. Mason R.L., Gunst R.F., Hess J.L., Statistical design and analysis of experiments with applications to engineering and science, John Wiley & Sons, Inc., New York, 1990.
  17. Meidinger D., Pojar J., Ecosystem of British Columbia, BC Ministry of Forests, Research Branch, Victoria, BC Special Report Series Number 6, 1991.
  18. Milner K.S., Site index and height growth curves for ponderosa pine, western larch, lodgepole pine, and Douglas-fir in western Montana, West. J. Appl. For. 7 (1992) 9-14.
  19. Monserud R.A., Height growth and site index curves for inland Douglas-fir based on stem analysis data and forest habitat type, For. Sci. 30 (1984) 943-965.
  20. Nigh G.D., A Sitka spruce height-age model with improved extrapolation properties, For. Chron. 73 (1997) 363-369.
  21. Nigh G.D., Species-independent height-age models for British Columbia, For. Sci. 47 (2001) 150-157.
  22. Nigh G.D., Love B.A., A model for estimating juvenile height of lodgepole pine, For. Ecol. Manage. 123 (1999) 157-166.
  23. Nigh G.D., Love B.A., Juvenile height development in interior spruce stands of British Columbia, West. J. Appl. For. 15 (2000) 117-121.
  24. Nigh G.D., Sit V., Validation of forest height-age models, Can. J. For. Res. 26 (1996) 810-818.
  25. Oliver W.W., Ryker R.A., Ponderosa pine, in: Burns R.M., Honkala B.H. (Techn. Coords.), Silvics of North America, Vol. 1, Agriculture Handbook 654, USDA Forest Service, Washington, DC, 1990, pp. 413-424.
  26. Ratkowksy D.A., Nonlinear regression modeling, Marcel Dekker, Inc., New York, 1983.
  27. SAS Institute Inc., SAS OnlineDoc®, Version 8, Cary, NC, 1999.
  28. Schenker N., Gentleman J.F., On judging the significance of differences by examining the overlap between confidence intervals, Am. Stat. 55 (2001) 182-186 [CrossRef] [MathSciNet].
  29. Seber G.A.F., Wild C.J., Nonlinear regression, John Wiley & Sons, Inc. Toronto, 1989.
  30. Sen A.K., Srivastava M., Regression analysis: theory, methods, and applications, Springer-Verlag, New York, Inc., New York, 1990.
  31. Shapiro S.S., Wilk M.B., An analysis of variance test for normality (complete samples), Biometrika 52 (1965) 591-611 [MathSciNet].
  32. Stansfield W.F., McTague J.P., Dominant-height and site-index equations for ponderosa pine in east-central Arizona, Can. J. For. Res. 21 (1991) 606-611.
  33. Thrower J.S., Goudie J.W., Estimating dominant height and site index of even-aged interior Douglas-fir in British Columbia, West. J. Appl. For. 7 (1992) 20-25.
  34. Wang G.G., Marshall P.L., Klinka K., Height growth pattern of white spruce in relation to site quality, For. Ecol. Manage. 68 (1994) 137-147.
  35. Wang Y., Payandeh B., A numerical method for the solution of a base-age-specific site index model, Can. J. For. Res. 23 (1993) 2487-2489.