Free Access
Issue
Ann. For. Sci.
Volume 61, Number 8, December 2004
Page(s) 759 - 769
DOI https://doi.org/10.1051/forest:2004072
References of Ann. For. Sci. 61 759-769
  1. Chambers J., Cleveland W., Kleiner B., Tukey P., Graphical methods for data analysis, Wadsworth, London, 1983.
  2. Corson S.R., Tree and fibre selection for optimal TMP quality, Appita J. 52 (1999) 351-357.
  3. Dutilleul P., Herman M., Avella-Shaw T., Growth rate effects on correlations among ring width, wood density, and mean tracheid length in Norway spruce (Picea abies), Can. J. For. Res. 28 (1998) 56-68 [CrossRef].
  4. Fritts H.C., Tree Rings and Climate, Academic Press, New York, 1976.
  5. Gilchrist W.G., Statistical Modelling with Quantile Functions, Chapman & Hall/CRC Press, New York, 2000.
  6. Jagels R., Telewski F.W., Computer-aided image analysis of tree rings, in: Cook E.R., Kairiukstis L.A. (Eds.), Methods of dendochronology: applications in the environmental sciences, Kluwer Academic Publishers, Boston, 1990.
  7. Karenlampi P., Effect of distributions of fibre properties on tensile strength of paper: A closed form theory, J. Pulp Pap. Sci. 21 (1995) 138-143.
  8. Karian Z.A., Dudewicz E.J., Fitting statistical distributions: the Generalized Lambda Distribution and Generalized Bootstrap Methods, Chapman & Hall/CRC Press, New York, 2000.
  9. Koubaa A., Koran Z., Effect of fibre properties on strength development of air dried and press dried spruce CTMP, in: Zhang S.Y., Gosselin R., Chauret G. (Eds.), Proceedings of the 26th Biannual Meeting of the Canadian Tree Improvement Association and International Workshop on Wood Quality (CTIA/IUFRO), Québec City, 1997, pp. VII 35-42.
  10. Koubaa A., Zhang T.S.Y., Makni S., Defining the transition from earlywood to latewood in black spruce based on intra-ring wood density profiles from X-ray densitometry, Ann. For. Sci. 59 (2002) 511-518 [EDP Sciences] [CrossRef].
  11. Larson P.R., Wood formation and the concept of wood quality, Yale University School of Forestry, Bulletin 74, 1969.
  12. Littell R.C., Milliken G.A., Stroup W.W., Wolfinger R., SAS System for Mixed Models, SAS Institute Inc., Cary, N.C., USA, 1996.
  13. Nepveu G., Timber management toward wood quality and end-product value: France's experience, in: Zhang S.Y., Gosselin R., Chauret G. (Eds.), Proceedings of the 26th Biannual Meeting of the Canadian Tree Improvement Association and International Workshop on Wood Quality (CTIA/IUFRO), Québec City, 1997, pp. IV 53-62.
  14. Parker M.L., Jozsa L.A., X-ray scanning machine for tree ring width and density analyses, Wood Fiber 5 (1973) 192-197.
  15. Rozenberg P., Cahalan C., Spruce and wood quality: genetic aspects (a review), Silvae Genet. 46 (1997) 270-279.
  16. Rozenberg P., Franc A., Mamdy C., Launay J., Scherman N., Bastien J.C. Genetic control of stiffness of standing Douglas fir; from the standing stem to the standardised wood sample, relationships between modulus of elasticity and wood density parameters, Part 2, Ann. For. Sci. 56 (1999) 145-154.
  17. Rozenberg P., Franc A., Chantre G., Baonza V., Indirect genetic selection of end-products wood properties: a method suitable for both tropical and temperate forest trees, S. Afr. For. J. 190 (2001) 99-104.
  18. Rozenberg P., Franc A., Bastien C., Cahalan C., Improving models of wood density by including genetic effect: a case study in Douglas fir, Ann. For. Sci., 58 (2001) 385-394.
  19. SAS Institute Inc., SAS/STAT® User's Guide, Version 6, 4th ed. Vols. 1 and 2, SAS Institute Inc., Cary, N.C., 1996.
  20. SAS Institute Inc., SAS/STAT® Software: Changes and Enhancements through Release 6.12, SAS Institute Inc., Carry, N.C., 1997.
  21. Statistical Sciences, S-PLUS Guide to Statistical and Mathematical Analysis, Version 3.2, Statistical Sciences, MathSoft Inc., Seattle, 1993.
  22. Taylor F.W., Wang E.I., Yanchuk A., Micko M.M., Specific gravity and tracheid length variation of white spruce in Alberta, Can. J. For. Res. 12 (1982) 561-566.
  23. Vargas-Hernandez J., Adams W.T. Genetic variation of wood density components in young coastal Douglas fir: implications for tree breeding, Can. J. For. Res. 21 (1991) 1801-1807.
  24. Venables W.N., Ripley B.D., Modern applied statistics with S-PLUS, Springer-Verlag, New York, 1999.
  25. Wimmer R., Downes G.M., Evans R., High-resolution analysis of radial growth and wood density in Eucalyptus nitens, grown under different irrigation regimes, Ann. For. Sci. 59 (2002) 519-524 [EDP Sciences] [CrossRef].
  26. Worrall J., Interrelationships among some phenological and wood property variables in Norway Spruce, TAPPI J. 53 (1970) 58-63.
  27. Worrall J., Provenance and clonal variation in phenology and wood properties of Norway spruce, Silvae Genet. 24 (1975) 2-5.
  28. Zamudio F., Beattig R., Vergara A., Guerra F., Rozenberg F., Genetic trends in wood density and radial growth with cambial age in a radiata pine progeny test, Ann. For. Sci. 59 (2002) 541-549 [EDP Sciences] [CrossRef].
  29. Zobel B.J., Jett J.B., Genetics of wood production, Springer-Verlag, New York, 1995.
  30. Zobel B.J., van Buijtenen J.P., Wood variation: its causes and control, Springer-Verlag, New York, 1989.