Free Access
Issue
Ann. For. Sci.
Volume 62, Number 1, January-February 2005
Page(s) 51 - 60
DOI https://doi.org/10.1051/forest:2004092
References of Ann. For. Sci. 62 51-60
  1. Aerts R., Boot R.G.A., van der Aart P.J.M., The relation between above- and belowground biomass allocation patterns and competitive ability, Oecologia 87 (1991) 551-559 [CrossRef].
  2. Ammer C., Growth and biomass partitioning of Fagus sylvatica L. and Quercus robur L. seedlings in response to shading and small changes in the R/FR-ratio of radiation, Ann. For. Sci. 60 (2003) 163-171 [EDP Sciences] [CrossRef].
  3. Bauhus J., Messier C., Soil exploitation strategies of fine roots in different tree species of the southern Boreal forest of eastern Canada, Can. J. For. Res. 29 (1999) 260-273 [CrossRef].
  4. Bazzaz F.A., Plants in changing environment. Linking physiological, population and community ecology, Cambridge Univ. Press, 1998.
  5. Beaudet M., Messier C., Growth and morphological responses of yellow birch, sugar maple, and beech seedlings growing under a natural light gradient, Can. J. For. Res. 28 (1998) 1007-1015 [CrossRef].
  6. Büttner V., Leuschner C., Spatial and temporal patterns of root abundance in a mixed oak-beech forest, For. Ecol. Manage. 70 (1994) 11-21.
  7. Cao K.F., Ohkubo T., Allometry, root/shoot ratio and root architecture in understory saplings of deciduous dicotyledonous trees in central Japan, Ecol. Res. 13 (1998) 217-227 [CrossRef].
  8. Coll L., Balandier P., Picon-Cochard C., Prévosto B., Curt T., Competition for water between beech seedlings and surrounding vegetation in different light and vegetation composition conditions, Ann. For. Sci. 60 (2003) 593-600 [EDP Sciences] [CrossRef].
  9. Coll L., Balandier P., Picon-Cochard C., Morphological and physiological response of beech (Fagus sylvatica) seedlings to grass-induced belowground competition, Tree Physiol. 24 (2004) 45-54.
  10. Collet C., Frochot H., Guehl J.M., Growth dynamics and water uptake of two forest grasses differing in their growth strategy and potentially competing for forest seedlings, Can. J. Bot. 74 (1996) 1555-1561.
  11. Collet C., Lanter O., Pardos M., Effects of canopy opening on height and diameter growth in naturally regenerated beech seedlings, Ann. For. Sci. 58 (2001) 127-134 [EDP Sciences] [CrossRef].
  12. Coomes D.A., Grubb P.J., Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments, Ecol. Monogr. 70 (2000) 171-207.
  13. Comas L.H., Bouma T.J., Eissenstat M., Linking root traits to potential growth rate in six temperate tree species, Oecologia 132 (2002) 34-42 [CrossRef].
  14. Cornelissen J.H.C., Castro Diez P., Hunt R., Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types, J. Ecol. 84 (1996) 755-765.
  15. Curt T., Prévosto B., Root biomass and rooting profile of naturally regenerated beech in mid-elevation Scots pine woodlands, Plant Ecol. 167 (2003) 269-282 [CrossRef].
  16. Curt T., Prévosto B., Rooting strategy of naturally regenerated beech in Silver birch and Scots pine woodlands, Plant Soil, Special Issue 255: 265-279 (2003) 265-279.
  17. Ellenberg H., Vegetation Ecology of Central Europe, 4th ed., Cambridge University Press, Cambridge, UK, 1988.
  18. Enquist B.J., Niklas K.J., Global allocation rules for patterns of biomass partitioning in seed plants, Science 295 (2002) 1517-1520 [CrossRef].
  19. Finér L., Messier C., DeGrandpré L., Fine-root dynamics in mixed Boreal conifer-broadleaf forest communities at different successional stages after fire, Can. J. For. Res. 27 (1997) 304-314 [CrossRef].
  20. Fitter A.L., An architectural approach to the comparative ecology of plant root systems, New Phytol. 106 (1988) 61-77.
  21. Fotelli M.N., Gessler A., Peuke A.D., Rennenberg H., Drought affects the competitive interactions between Fagus sylvatica seedlings and an early successional species, Rubus fruticosus: responses of growth, water status and delta C-13 composition, New Phytol. 151 (2001) 427-435 [CrossRef].
  22. Garnier E., Resource capture, biomass allocation and growth in herbaceous plants, Trends Ecol. Evol. 6 (1991) 126-131 [CrossRef].
  23. Garnier E., Shipley B., Roumet C., Laurent G., A standardized protocol for the determination of specific leaf area and leaf dry matter content, Funct. Ecol. 15 (2001) 688-695 [CrossRef].
  24. Gedroc J.J., McConnaughay K.D.M., Coleman J.S., Plasticity in root/shoot partitioning: optimal, ontogenic, or both? Funct. Ecol. 10 (1996) 44-50.
  25. Gemmel P., Nilsson U., Welander T., Development of oak and beech seedlings planted under varying shelterwood densities and with different site preparation methods in southern Sweden, New For. 12 (1996) 141-161.
  26. Givnish T.J., Leaf and canopy adaptations in tropical forests, in: Medina E., Mooney H.A., Vasquez-Yanes C. (Eds.), Physiological ecology of plants of wet tropics, W. Junk Publ., The Hague, 1984, pp. 51-84.
  27. Grime J.P., Hodgson J.G., Hunt R., Comparative plant ecology: a functional approach to common British species, Unwin Hyman, London, 1988.
  28. Kaelke C.M., Kruger E.L., Reich P.B., Trade-offs in seedling survival, growth, and physiology among hardwood species of contrasting successional status along a light-availability gradient, Can. J. For. Res. 31 (2001) 1602-1616 [CrossRef].
  29. Kitajima K., Relative importance of photosynthetic traits and allocation patterns as correlates of seedlings shade tolerance of 13 tropical trees, Oecologia 98 (1994) 419-428 [CrossRef].
  30. Kobe R.K.S., Pacala S.W., Silander J.A., Canham C.D., Juvenile tree survivorship as a component of shade tolerance, Ecol. Appl. 5 (1996) 517-532.
  31. Kolb T.E., Steiner K.C., Growth and biomass partitioning of northern red oak and yellow-poplar seedlings: effects of shading and grass root competition, For. Sci. 36 (1990) 34-44.
  32. Kunstler G., Curt T., Lepart J., Spatial pattern of beech and oak seed-lings in naturally regenerated Pinus woodlands, Eur. J. For. Res. 1 (2005) 1-13.
  33. Küppers M., Canopy gaps: competitive light interception and economic space filling: A matter of whole-plant allocation, in: Caldwell M.M., Pearcy R.W. (Eds.), Exploitation of environmental heterogeneity by plants: Ecophysiological processes above- and belowground, Acad. Press, San Diego, California, 1994, pp. 111-144.
  34. Löf M., Establishment and growth in seedlings of Fagus sylvatica and Quercus robur: influence of interference from herbaceous vegetation, Can. J. For. Res. 30 (2000) 855-864 [CrossRef].
  35. Machado J.L., Walters M.B., Reich P.B., Below-ground resources limit seedling growth in forest understories but does not alter biomass distribution, Ann. For. Sci. 60 (2003) 1-12 [EDP Sciences] [CrossRef].
  36. Madsen P., Effects of soil water content, fertilization, light, weed competition and seedbed type on natural regeneration of beech (Fagus sylvatica), For. Ecol. Manage. 72 (1995) 251-264.
  37. Messier C., Nikinmaa E., Effects of light availability and sapling size on the growth, biomass allocation, and crown morphology of understory sugar maple, yellow birch, and beech, Ecoscience 7 (2000) 345-356.
  38. Minotta G., Pinzauti S., Effects of light and soil fertility on growth, leaf chlorophyll content and nutrient use efficiency of beech (Fagus sylvatica L.) seedlings, For. Ecol. Manage. 86 (1996) 61-71.
  39. Planchais I., Sinoquet H., Foliage determinants of light interception in sunny and shaded branches of Fagus sylvatica (L.), Agric. For. Meteorol. 89 (1998) 241-253 [CrossRef].
  40. Pregitzer K.S., DeForest J.L., Burton A.J., Allen M.F., Ruess R.W., Hendrick R.L., Fine root architecture of nine North American trees, Ecol. Monogr. 72 (2002) 293-309.
  41. Prévosto B., Curt T., Gueugnot J., Coquillard P., Modelling mid-elevation Scots pine growth on a volcanic substrate, For. Ecol. Manage. 131 (2000) 223-237.
  42. Reich P.B., Tjoelker M.G., Walters M.B., Vanderklein D.W., Bushena C., Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light, Funct. Ecol. 12 (1998) 327-338 [CrossRef].
  43. Rust S., Savill P.S., The root system of Fraxinus excelsior and Fagus sylvatica and their competitive relationships, Forestry 5 (2000) 499-508.
  44. Sack L., Grubb P.J., The combined impacts of deep shade and drought on the growth and biomass allocation of shade-tolerant woody seedlings, Oecologia 131 (2002) 175-185 [CrossRef].
  45. Sack L., Maranon T., Grubb P.J., Global allocation rules for patterns of biomass partitioning, Science 296 (2002) 5575.
  46. Shipley B., Meziane D., The balanced-growth hypothesis and the allometry of leaf and root biomass allocation, Funct. Ecol. 16 (2002) 326-331 [CrossRef].
  47. Thornley J.H.M., Root:shoot interactions, in: Jennings D.M. (Ed.), Integration of Activity in the Higher Plants, Cambridge University Press, London, 1977, pp. 367-387.
  48. Valladares F., Chico J.M., Aranda I., Balaguer L., Dizengremel P., Manrique E., Dreyer E., The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity, Trees 16 (2002) 395-403.
  49. Van Hees A.F.M., Clerkx A.P.P.M., Shading and root-shoot relations in saplings of silver birch, pedunculate oak and beech, For. Ecol. Manage. 176 (2003) 439-448.
  50. Vogt K.A., Vogt D.J., Palmiotto P.A., Boon P., O'Hara J., Asbjornsen H., Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species, Plant Soil 187 (1996) 159-219.
  51. Walters M.B., Reich P.B., Seed size, nitrogen supply, and growth rate affect tree seedling survival in deep shade, Ecology 81 (2000) 1887-1901.
  52. Welander N.T., Ottosson B., The influence of shading on growth and morphology in seedlings of Quercus robur L. and Fagus sylvatica L., For. Ecol. Manage. 107 (1998) 117-126.
  53. Wright I.J., Westoby M., Cross-species relationships between seedling relative growth rate, nitrogen productivity and root vs. leaf function in 28 Australian woody species, Funct. Ecol. 14 (2000) 97-107 [CrossRef].