Free Access
Ann. For. Sci.
Volume 62, Number 3, April-May 2005
Page(s) 285 - 288
References of Ann. For. Sci. 62 285-288
  1. Bauer G., Berntson G., Ammonium and nitrate acquisition by plants in response to elevated CO2 concentration: the roles of root physiology and architecture, Tree Physiol. 21 (2001) 137-144 [PubMed].
  2. Cotrufo M.F., Ineson P., Scott A., Elevated CO2 reduces the nitrogen concentration of plant tissues, Glob. Change Biol. 4 (1998) 43-54 [CrossRef].
  3. Deléens E., Cliquet J.B., Prioul J.L., Use of 13C and 15N plant label near natural abundance for monitoring carbon and nitrogen partitioning, Aust. J. Plant. Physiol. 21 (1994) 133-146.
  4. Dyckmans J., Flessa H., Polle A., Beese F., The effect of elevated [CO2] on uptake and allocation of 13C and 15N in beech (Fagus sylvatica L.) during leafing, Plant Biol. 2 (2000) 113-120.
  5. Dyckmans J., Flessa H., Influence of tree internal N status on uptake and translocation of C and N in beech: a dual 13C and 15N labelling approach, Tree Physiol. 21 (2001) 395-401 [PubMed].
  6. Dyckmans J., Flessa H., Influence of tree internal nitrogen reserves on the response of beech (Fagus sylvatica) trees to elevated atmospheric carbon dioxide concentration, Tree Physiol. 22 (2002) 41-49 [PubMed].
  7. Feng Z., Dyckmans J., Flessa, H., Effects of elevated [CO2] on growth and N2 fixation of young Robinia pseudoacacia, Tree Physiol. 24 (2004) 323-330 [PubMed].
  8. Marmann P., Wendler R., Millard P., Heilmeier H., Nitrogen storage and remobilization in ash (Fraxinus excelsior) under field and laboratory conditions, Trees 11 (1997) 298-305.
  9. Millard P., Ecophysiology of the internal cycling of nitrogen for tree growth, Z. Pflanzenernähr. Bodenkd. 159 (1996) 1-10.
  10. Millard P., Wendler R., Hepburn A., Smith A., Variations in the amino acid composition of xylem sap of Betula pendula Roth. trees due to remobilization of stored N in the spring, Plant Cell Environ. 21 (1998) 715-722.
  11. Murray M.B., Smith R.I., Friend A., Jarvis P.G., Effect of elevated [CO2] and varying nutrient application rates on physiology and biomass accumulation of Sitka spruce (Picea sitchensis), Tree Physiol. 20 (2000) 421-434 [PubMed].
  12. Olesniewicz K.S., Thomas R.B., Effects of mycorrhizal colonization on biomass production and nitrogen fixation of black locust (Robinia pseudoacacia) seedlings grown under elevated atmospheric carbon dioxide, New Phytol. 142 (1999) 133-140.
  13. Saxe H., Ellsworth D.S., Heath J., Tree and forest functioning in an enriched CO2 atmosphere, New Phytol. 139 (1998) 395-436.
  14. Tagliavini M., Millard P., Quartieri M., Marangoni B., Timing of nitrogen uptake affects winter storage and spring remobilisation of nitrogen in nectarine (Prunus persica var. nectarina) trees, Plant Soil 211 (1999) 149-153 [CrossRef].
  15. Temperton V.M., Millard P., Jarvis P.G., Does elevated atmospheric carbon dioxide affect internal nitrogen allocation in the temperate trees Alnus glutinosa and Pinus sylvestris? Glob. Change Biol. 9 (2003) 286-294.
  16. Tissue D.T., Megonigal J.P., Thomas R.B., Nitrogenase activity and N2 fixation are stimulated by elevated CO2 in a tropical N2-fixing tree, Oecologia 109 (1997) 28-33.
  17. Tognetti R., Johnson J.D., Responses of growth, nitrogen and carbon partitioning to elevated atmospheric CO2 concentration in live oak (Quercus virginiana Mill.) seedlings in relation to nutrient supply, Ann. For. Sci. 56 (1999) 91-105.
  18. Vogel C.S., Curtis P.S., Thomas R.B., Growth and nitrogen accretion of dinitrogen-fixing Alnus glutinosa L. Gaertn. under elevated carbon dioxide, Plant Ecol. 130 (1997) 63-70 [CrossRef].
  19. Weinbaum S.A., van Kessel C., Quantitative estimates of uptake and internal cycling of 14N-labeled fertilizer in mature walnut trees, Tree Physiol. 18 (1998) 795-801 [PubMed].
  20. Wendler R., Millard P., Impacts of water and nitrogen supplies on the Physiol., leaf demography and nitrogen dynamics of Betula pendula, Tree Physiol. 16 (1996) 153-159 [PubMed].