Free Access
Ann. For. Sci.
Volume 62, Number 6, September-October 2005
Page(s) 545 - 551
References of Ann. For. Sci. 62 545-551
  1. Anderson M.C., Studies of the woodland light climate, I, The photographic computation of light conditions, J. Ecol. 52 (1964) 27-41.
  2. Ashton P.M.S., Berlyn G.P., A comparison of leaf physiology and anatomy of Quercus (section Erythrobalanus Fagaceae) species in different light environments, Am. J. Bot. 81 (1994) 589-597.
  3. Baruch Z., Goldstein G., Leaf construction costs, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii, Oecologia 121 (1999) 183-192 [CrossRef].
  4. Bazzaz F.A., Wayne P.M., Coping with environmental heterogeneity: the physiological ecology of tree seedling regeneration across the gap-understorey continuum, in: Caldwell M.M., Pearcy R.W. (Eds.), Exploitation of environmental heterogeneity by plants, ecophysiological processes above and below ground: Physiological ecology, Academic Press, San Diego, 1994, pp. 349-390.
  5. Boardman N.K., Comparative photosynthesis of sun and shade plants, Ann. Rev. Plant Physiol. 28 (1977) 355-377.
  6. Canham C.D., Denslow J.S., Platt W.J., Runkle J.R., Spies T.A., White P.S., Light regimes beneath closed canopies and tree fall-gaps in temperate and tropical forest, Can. J. For. Res. 20 (1990) 620-631.
  7. Canham C.D., Software for calculation of light transmission through forest canopies using colour fisheye photography, Institute for Ecosystem Studies, Millbrook, NY, 1995.
  8. Cartelat A., Cerovic Z.G., Goulas Y., Meyer S., Lelarge C., Prioul J.L., Barbottin A., Jeuffroy M.H., Gate P., Agati G., Moya I., Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.), Field Crops Res. 95 (2005) 35-49.
  9. Chapin F.S.III., The cost of plant structures: evaluation of concepts and currencies, Am. Nat. 133 (1989) 1-19 [CrossRef].
  10. Ellsworth D.S., Reich P.B., Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest, Oecologia 96 (1993) 169-178 [CrossRef].
  11. Frazer G.W., Fournier R.A., Trofymow J.A., Hall R.J., A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission, Agr. Forest. Meteor. 109 (2001) 249-263.
  12. Frazer, G.W., Canham, C.D., Lertzman, K.P., Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation, Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York, 1999.
  13. Gary C., Bertin N., Lebot J., High mineral contents explain the low construction cost of leaves, stem, and fruits of tomato plants, J. Exp. Bot. 49 (1998) 49-57 [CrossRef].
  14. Givnish T.J., Adaptation to sun and shade: a whole plant perspective, Aust. J. Plant Physiol. 15 (1988) 63-92.
  15. Goulas Y., Cerovic Z.G., Cartelet A., Moya I., Dualex: a new instrument for field measurements of epidermal UV absorbance by chlorophyll fluorescence, Appl. Opt. 43 (2004) 4488-4496 [CrossRef] [PubMed].
  16. Griffin K.I., Thomas R.B., Strain B.R., Effects of nutrient supply and elevated carbon dioxide on construction cost in leaves of Pinus taeda seedlings, Oecologia 95 (1993) 575-580.
  17. King D.A., Correlations between biomass allocation, relative growth rate and light environment in tropical forest saplings, Funct. Ecol. 5 (1991) 485-492.
  18. King D.A., Influence of light level on the growth and morphology of saplings in a Panamanian forest, Am. J. Bot. 81 (1994) 948-957.
  19. King D.A., Allocation of above-ground growth is related to light in temperate deciduous saplings, Funct. Ecol. 17 (2001) 482-488 [CrossRef].
  20. Laffite H.R., Loomis R.S., Calculation of growth yield, growth respiration, and heat content of grain sorghum from elemental and proximal analysis, Ann. Bot. 62 (1988) 353-361.
  21. Le Roux X., Sinoquet H., Vandame M., Spatial distribution of leaf weight per area and leaf nitrogen content in relation to local radiation regime within an isolated tree crown, Tree Physiol. 19 (1999) 181-188 [PubMed].
  22. McDermitt D.K., Loomis R.S., Elemental composition of biomass and its relation to energy content, growth efficiency, and growth yield, Ann. Bot. 48 (1981) 275-290.
  23. Martinez F., Lazo Y.O., Fernandez-Galiano R.M., Merino J.A., Chemical composition and construction cost of roots of Mediterranean trees, shrub species and grassland communities. Plant Cell Environ. 25 (2002) 601-608.
  24. Merino J.A., Field C.B., Mooney H.A., Construction and maintenance costs of Mediterranean-climate evergreen and deciduous leaves. II. Biochemical pathway analysis, Oecol. Plant. 5 (1984) 211-229.
  25. Messier C., Doucet R., Ruel J.C., Claveau Y., Kelly C., Lechowicz M.J., Functional ecology of advance regeneration in relation to light in Boreal forests, Can. J. For. Res. 29 (1999) 812-823 [CrossRef].
  26. Niinemets Ü., Are compound-leaved woody species inherently shade-intolerant? An analysis of species ecological requirements and foliar support costs, Plant Ecol. 134 (1998) 1-11 [CrossRef].
  27. Niinemets Ü., Kull O., Biomass investment in leaf lamina versus lamina support in relation to growth irradiance and leaf size in temperate deciduous trees, Tree Physiol. 19 (1999) 349-358 [PubMed].
  28. Niinemets Ü., Valladares F., Ceulemans R., Leaf-level phenotypic variability and plasticity of invasive Rhododendron ponticum and non-invasive Ilex aquifolium co-occuring at two contrasting European sites, Plant Cell Environ. 26 (2003) 941-956 [CrossRef] [PubMed].
  29. Pearcy R.W., Sims D.A., Photosynthetic acclimatation to changing light environments: scaling from the leaf to the whole plant, in: Caldwell M.M., Pearcy R.W. (Eds.), Exploitation of environmental heterogeneity by plants, ecophysiological processes above and below ground: Physiological Ecology, Academic press, San Diego, 1994, pp. 145-174.
  30. Poorter H., Construction costs and payback time of biomass: a whole-plant perspective, in: Roy J., Garnier E. (Eds.), A whole plant perspective on carbon-nitrogen interactions, S.P.B Academic Publishing, The Hague, 1994, pp. 111-127.
  31. Poorter H., Bergkotte M., Chemical composition of 24 wild species differing in relative growth rate, Plant Cell Environ. 15 (1992) 2211-2229.
  32. Poorter H., De Jong R., A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity, New Phytol. 143 (1999) 163-176 [CrossRef].
  33. Poorter H., Villar R., The fate of acquired carbon in plants: chemical composition and construction costs, in: Bazzaz F.A., Grace J. (Eds.), Plant resource allocation, Academic Press, San Diego, 1997, pp. 39-72.
  34. Poorter L., Light-dependent changes in biomass allocation and their importance for growth of rain forest tree species, Funct. Ecol. 15 (2001) 113-123 [CrossRef].
  35. Rameau J.C., Mansion M., Dumé G., Flore forestière française, guide écologique illustré, Tome 1 : Plaines et collines, Institut pour le développement forestier, Paris,1993.
  36. Reich P.B., Walters M.B., Ellsworth D.S., Vose J., Volin J., Gresham C., Bowman W., Relationships of leaf dark respiration to leaf N, SLA, and life span: a test across biomes and functional groups, Oecologia 114 (1998) 471-482 [CrossRef].
  37. Roggy J.C., Nicolini E., Imbert P., Caraglio Y., Bosc A., Heuret P., Links between tree structure and functional leaf traits in the tropical forest tree Dicorynia guianensis Amshoff (Caesalpinaceae), Ann. For. Sci. 62 (2005) 553-564.
  38. Sims D.A., Pearcy R.W., Scaling sun and shade photosynthetic acclimatation of Alocasia macrorrhiza to whole-plant performance. I. Carbon balance and allocation at different daily photon flux densities, Plant Cell Environ. 17 (1994) 881-887.
  39. Sobrado M.A., Cost-benefit relationships in deciduous and evergreen leaves of tropical dry forest species, Funct. Ecol. (1991) 608-616.
  40. Valladares F., Skillman J.B., Pearcy R.W., Convergence in light capture efficiencies among tropical forest shade tolerant plants with contrasting crown architectures: a case of morphological compensation, Am. J. Bot. 89 (2002) 1275-1284.
  41. Vertregt N., Penning de Vries F.W.T., A rapid method for determining the efficiency of biosynthesis of plant biomass, J. Theor. Biol. 128 (1987) 109-119.
  42. Villar R., Merino J., Comparison of leaf construction costs of woody species with differing leaf life-spans in contrasting ecosystems, New Phytol. 151 (2001) 213-226 [CrossRef].
  43. Williams K., Field C.B., Mooney H.A., Relationships among leaf construction cost, leaf longevity, and light environment in rain-forest plants of the Genus Piper, Am. Nat. 133 (1989) 198-211 [CrossRef].
  44. Williams K., Percival F., Merino J., Mooney H.A., Estimation of tissue construction cost from heat of combustion and organic nitrogen content, Plant Cell Environ. 10 (1987) 725-734.
  45. Wright I.J, Reich P.B., Westoby M., Ackerly D.D., Baruch Z., Bongers F., Cavender-Bares J., Chapin T., Cornelissen J.H.C., Diemer M., Flexas J., Garnier E., Groom P.K., Gulias J., Hikosaka K., Lamont B.B., Lee T., Lee W., Lusk C., Midgley J.J., Navas M.L., Niinemets U., Oleksyn J., Osada N., Poorter H., Poot P., Prior L., Pyankov V.I., Roumet C., Thomas S.C., Tjoelker M.G., Veneklaas E.J., Villar R., The worldwide leaf economics spectrum, Nature 428 (2004) 821-827 [CrossRef] [PubMed].